Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 323: 116151, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130427

RESUMO

The deterministic mechanistic model derived from the fundamental of the dynamical fouling system was investigated to estimate fouling parameters, with theoretical biogas sparging performance evaluated of a Submerged Anaerobic Membrane Bioreactor treating trade wastewater. The result showed that the sparging effectiveness of EPSc removal was average, 35% higher than the sparging effectiveness of EPSp, with the coefficient of fouling removal characterizing the dynamic time behaviour increasing with the organic loading rate. The dynamic system analysis predicted that the process gain for SAnMBR-1 was more than 30% compared with SAnMBR-2, which supported a widely known theory of fouling dependence of organic loading rate.


Assuntos
Biocombustíveis , Águas Residuárias , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos
2.
Environ Sci Pollut Res Int ; 29(33): 49632-49650, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597831

RESUMO

An exponentially growing global population has led to an increase in nutrient pollution in different aqueous bodies. Although different processes have successfully removed nutrients from wastewater on a large scale, a limited number of studies have been reported on efficiency, cost-effectiveness, and future potential of physical, chemical, and biological nutrient recovery methods to overcome the depletion of natural resources. Therefore, researchers need to understand current research trends by applying different approaches to investigate higher efficient nutrient recovery technologies. In this article, the research patterns and in-depth review of various nutrient recovery processes have been circumscribed with the application of bibliometric and attractive index (AAI) vs. activity index (AI) analysis. The performance, advantages, limitations, and future prospects of different nutrient recovery methods have also been addressed. More than 70% of study publications were published in the last decade in chemical and biological processes, which might be related to more rigorous effluent quality rules and increasing water pollution. The future prediction in the field of nutrient recovery has been predicted using S-curve analysis, and it was found that the number of publications in the saturated state in chemical methods was highest. However, the growth rate of the biological-based nutrient recovery methods is greater, which may be because of their huge research scope, cost-effectiveness, and easy operation methods. This study can assist researchers in understanding the current research scenario in nutrient recovery techniques and provide the research scope in nutrient recovery from wastewater in the future.


Assuntos
Bibliometria , Águas Residuárias , Nutrientes , Publicações
3.
Environ Sci Pollut Res Int ; 29(14): 20017-20034, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33394433

RESUMO

Adsorptive removal of copper by activated carbon derived from modified rice husk (ACRH) was studied in the presence and absence of magnetic field (MF). The ACRH was prepared from the normal rice husk treated by NaOH solution and subsequent pyrolysis at 450 °C in the absence of oxygen. The physicochemical properties of ACRH's were determined before and after the adsorption process to delineate the adsorption mechanism. The BET analysis confirmed that the fabricated ACRH has a specific surface area of 8.244 m2/g with a mesopore to micropore ratio of 0.974. It was observed that the micropore structure gradually replaced the mesopores, and the surface area of the micropore increased (from 0.9219 to 4.1764 m2/g), and the pore diameter was also decreased from 180.381 to 46.249 Å after pyrolysis. The CHNO/S test result reveals that the carbon content was increased from 42 to 67.8% in the ACRH after pyrolysis. The batch sorption studies were performed by varying the initial adsorbate concentration, temperature, agitation speed, pH, adsorbent dose and contact time for magnetic and non-magnetic conditions to analyze the effect of the magnetic field. The univariate studies show that the maximum experimental adsorption capacity was 4.522 mg/g and 3.855 mg/g, respectively, for these two conditions (representing the magnetic impact) at 25 °C with an adsorbent dose of 2 g/L and an agitation speed of 150 rpm. It was also observed that the removal efficiency was 94.55% and 77.96% (magnetic and non-magnetic condition) at pH 7 with a concentration of 10 mg/L in 2 h. The test result on the impact of exposure time on the magnetic field suggested that the magnetic memory influenced the removal efficiency; after 40 to 60 min, the maximum removal efficiency was achieved, around 80 to 90%. The pseudo-second-order kinetic model was best fitted with the experimental data with a rate constant as 0.1749 and 0.1006 g/mg/min for these two conditions. The Temkin model delineates the adsorption isotherm suggesting the heat generated during the adsorption process is linearly abate with the coverage of the surface area of the adsorbent. The thermodynamic model confirms that the copper adsorption is spontaneous (ΔG = - 3.91 kJ/mol and - 6.02 kJ/mol), wherein the negative enthalpy value (ΔH = - 36.74 kJ/mol and - 25.74 kJ/mol) suggested that the process is exothermic irrespective of magnetic interference. The significant enhancement of copper removal was observed by incorporating the magnetic field, showing an increase in sorption capacity by 17.48% and a reduction of reaction time by 88.12%.


Assuntos
Oryza , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Cobre , Concentração de Íons de Hidrogênio , Cinética , Campos Magnéticos , Oryza/química , Termodinâmica , Poluentes Químicos da Água/química
4.
J Environ Manage ; 301: 113867, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607143

RESUMO

A mathematical model, which was previously developed for submerged aerobic membrane bioreactors, was successfully applied to elucidate the membrane cake-layer fouling mechanisms due to bound extracellular polymeric substances (eEPS) in a submerged anaerobic membrane bioreactor (SAnMBR). This biofouling dynamic model explains the mechanisms such as attachment, consolidation and detachment of eEPS produced in the bioreactor on the membrane surface. The 4th order Runge-Kutta method was used to solve the model equations, and the parameters were estimated from simulated and experimental results. The key design parameters representing the behaviour of cake fouling dynamics were systematically investigated. Organic loading rate (OLR) was considered a controlling factor governing the mixed liquor suspended solids (MLSS), eEPS production, filtration resistance (Rt), and transmembrane pressure (TMP) variations in a SAnMBR. eEPS showed a proportional relation with OLR at subsequent MLSS variations. The consolidation of EPS increased the specific eEPS resistance (αs), influencing the cake resistance (Rc). The propensities of eEPS showed a positive correlation with Rt and TMP. The outcomes of the study also estimated a set of valuable design parameters which would be vital for applying in AnMBRs treating industrial wastewater.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Filtração , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...