Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 523(1): 239-245, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31862139

RESUMO

Hyperglycemia is an independent risk factor for diabetic heart failure. However, the mechanisms that mediate hyperglycemia-induced cardiac damage remain poorly understood. Previous studies have shown an association between lysosomal dysfunction and diabetic heart injury. The present study examined if mimicking hyperglycemia in cultured cardiomyocytes could induce lysosomal membrane permeabilization (LMP), leading to the release of lysosome enzymes and subsequent cell death. High glucose (HG) reduced the number of lysosomes with acidic pH as shown by a fluorescent pH indicator. Also, HG induced lysosomal membrane injury as shown by an accumulation of Galectin3-RFP puncta, which was accompanied by the leakage of cathepsin D (CTSD), an aspartic protease that normally resides within the lysosomal lumen. Furthermore, CTSD expression was increased in HG-cultured cardiomyocytes and in the hearts of 2 mouse models of type 1 diabetes. Either CTSD knockdown with siRNA or inhibition of CTSD activity by pepstatin A markedly diminished HG-induced cardiomyocyte death, while CTSD overexpression exaggerated HG-induced cell death. Together, these results suggested that HG increased CTSD expression, induced LMP and triggered CTSD release from the lysosomes, which collectively contributed to HG-induced cardiomyocyte injury.


Assuntos
Catepsina D/metabolismo , Morte Celular , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Miócitos Cardíacos/metabolismo , Animais , Catepsina D/antagonistas & inibidores , Catepsina D/genética , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência , Miócitos Cardíacos/patologia , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley
2.
FASEB J ; 33(10): 11096-11108, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291545

RESUMO

Doxorubicin (Dox) is a widely used antineoplastic agent that can cause heart failure. Dox cardiotoxicity is closely associated with mitochondrial damage. Mitochondrial fission and mitophagy are quality control mechanisms that normally help maintain a pool of healthy mitochondria. However, unchecked mitochondrial fission and mitophagy may compromise the viability of cardiomyocytes, predisposing them to cell death. Here, we tested this possibility by using Dox-treated H9c2 cardiac myoblast cells expressing either the mitochondria-targeted fluorescent protein MitoDsRed or the novel dual-fluorescent mitophagy reporter mt-Rosella. Dox induced mitochondrial fragmentation as shown by reduced form factor, aspect ratio, and mean mitochondrial size. This effect was abolished by short interference RNA-mediated knockdown of dynamin-related protein 1 (DRP1), a major regulator of fission. Importantly, DRP1 knockdown decreased cell death as indicated by the reduced number of propidium iodide-positive cells and the cleavage of caspase-3 and poly (ADP-ribose) polymerase. Moreover, DRP1-deficient mice were protected from Dox-induced cardiac damage, strongly supporting a role for DRP1-dependent mitochondrial fragmentation in Dox cardiotoxicity. In addition, Dox accelerated mitophagy flux, which was attenuated by DRP1 knockdown, as assessed by the mitophagy reporter mt-Rosella, suggesting the necessity of mitochondrial fragmentation in Dox-induced mitophagy. Knockdown of parkin, a positive regulator of mitophagy, dramatically diminished Dox-induced cell death, whereas overexpression of parkin had the opposite effect. Together, these results suggested that Dox cardiotoxicity was mediated, at least in part, by the increased mitochondrial fragmentation and accelerated mitochondrial degradation by the lysosome. Strategies that limit mitochondrial fission and mitophagy in the physiologic range may help reduce Dox cardiotoxicity.-Catanzaro, M. P., Weiner, A., Kaminaris, A., Li, C., Cai, F., Zhao, F., Kobayashi, S., Kobayashi, T., Huang, Y., Sesaki, H., Liang, Q. Doxorubicin-induced cardiomyocyte death is mediated by unchecked mitochondrial fission and mitophagy.


Assuntos
Cardiotoxicidade/etiologia , Morte Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cardiotoxicidade/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Dinaminas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...