Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826199

RESUMO

i. Accurate identification of the locations of endogenous proteins is crucial for understanding their functions in tissues and cells. However, achieving precise cell-type-specific labeling of proteins has been challenging in vivo . A notable solution to this challenge is the self-complementing split green fluorescent protein (GFP 1-10/11 ) system. In this paper, we present a detailed protocol for labeling endogenous proteins in a cell-type-specific manner using the GFP 1-10/11 system in fruit flies. This approach depends on the reconstitution of the GFP 1-10 and GFP 11 fragments, creating a fluorescence signal. We insert the GFP 11 fragment into a specific genomic locus while expressing its counterpart, GFP 1-10 , through an available Gal4 driver line. The unique aspect of this system is that neither GFP 1-10 nor GFP 11 alone emits fluorescence, enabling the precise detection of protein localization only in Gal4-positive cells expressing the GFP 11 tagged endogenous protein. We illustrate this technique using the adhesion molecule gene teneurin-m ( Ten-m ) as a model, highlighting the generation and validation of GFP 11 protein trap lines via Minos-mediated integration cassette (MiMIC) insertion. Furthermore, we demonstrate the cell-type-specific labeling of Ten-m proteins in the larval brains of fruit flies. This method significantly enhances our ability to image endogenous protein localization patterns in a cell-type-specific manner and is adaptable to various model organisms beyond fruit flies.

2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074768

RESUMO

The impact of the Drosophila experimental system on studies of modern biology cannot be understated. The ability to tag endogenously expressed proteins is essential to maximize the use of this model organism. Here, we describe a method for labeling endogenous proteins with self-complementing split fluorescent proteins (split FPs) in a cell-type-specific manner in Drosophila A short fragment of an FP coding sequence is inserted into a specific genomic locus while the remainder of the FP is expressed using an available GAL4 driver line. In consequence, complementation fluorescence allows examination of protein localization in particular cells. Besides, when inserting tandem repeats of the short FP fragment at the same genomic locus, we can substantially enhance the fluorescence signal. The enhanced signal is of great value in live-cell imaging at the subcellular level. We can also accomplish a multicolor labeling system with orthogonal split FPs. However, other orthogonal split FPs do not function for in vivo imaging besides split GFP. Through protein engineering and in vivo functional studies, we report a red split FP that we can use for duplexed visualization of endogenous proteins in intricate Drosophila tissues. Using the two orthogonal split FP systems, we have simultaneously imaged proteins that reside in distinct subsynaptic compartments. Our approach allows us to study the proximity between and localization of multiple proteins endogenously expressed in essentially any cell type in Drosophila.


Assuntos
Drosophila/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos , Coloração e Rotulagem/métodos , Fator 6 de Ribosilação do ADP , Animais , Animais Geneticamente Modificados , Drosophila/genética , Proteínas de Drosophila , Fluorescência , Proteínas de Fluorescência Verde/genética , Engenharia de Proteínas , Fatores de Transcrição
3.
Dev Cell ; 35(1): 93-106, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26460947

RESUMO

Precise positioning of dendritic branches is a critical step in the establishment of neuronal circuitry. However, there is limited knowledge on how environmental cues translate into dendrite initiation or branching at a specific position. Here, through a combination of mutation, RNAi, and imaging experiments, we found that a Dscam-Dock-Pak1 hierarchical interaction defines the stereotypical dendrite growth site in the Drosophila aCC motoneuron. This interaction localizes the Cdc42 effector Pak1 to the plasma membrane at the dendrite initiation site before the activation of Cdc42. Ectopic expression of membrane-anchored Pak1 overrides this spatial specification of dendritogenesis, confirming its function in guiding Cdc42 signaling. We further discovered that Dscam1 localization in aCC occurs through an inter-neuronal contact that involves Dscam1 in the partner MP1 neuron. These findings elucidate a mechanism by which Dscam1 controls neuronal morphogenesis through spatial regulation of Cdc42 signaling and, subsequently, cytoskeletal remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dendritos/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Moléculas de Adesão Celular , Diferenciação Celular , Membrana Celular/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Imunoenzimáticas , Interneurônios/citologia , Interneurônios/metabolismo , Morfogênese/fisiologia , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa/antagonistas & inibidores , Moléculas de Adesão de Célula Nervosa/genética , RNA Interferente Pequeno/genética , Quinases Ativadas por p21/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...