Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gynecol Oncol ; 185: 8-16, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342006

RESUMO

OBJECTIVE: We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. METHODS: GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. RESULTS: GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-ß growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. CONCLUSIONS: We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.


Assuntos
Glutationa Peroxidase , Fator 15 de Diferenciação de Crescimento , Neoplasias Ovarianas , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/biossíntese , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes
2.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352432

RESUMO

Objective: We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. Methods: GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. Results: GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-ß growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. Conclusions: We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.

3.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790404

RESUMO

Aberrant mitochondrial fission/fusion dynamics have been reported in cancer cells. While post translational modifications are known regulators of the mitochondrial fission/fusion machinery, we show that alternative splice variants of the fission protein Drp1 (DNM1L) have specific and unique roles in cancer, adding to the complexity of mitochondrial fission/fusion regulation in tumor cells. Ovarian cancer specimens express an alternative splice transcript variant of Drp1 lacking exon 16 of the variable domain, and high expression of this splice variant relative to other transcripts is associated with poor patient outcome. Unlike the full-length variant, expression of Drp1 lacking exon 16 leads to decreased association of Drp1 to mitochondrial fission sites, more fused mitochondrial networks, enhanced respiration, and TCA cycle metabolites, and is associated with a more metastatic phenotype in vitro and in vivo. These pro-tumorigenic effects can also be inhibited by specific siRNA-mediated inhibition of the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the significance of the pathophysiological consequences of Drp1 alternative splicing and divergent functions of Drp1 splice variants, and strongly warrant consideration of Drp1 splicing in future studies.

4.
Sci Signal ; 14(711): eabc4520, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34846918

RESUMO

Aberrant activation of the RAS family of guanosine triphosphatases (GTPases) is prevalent in lung adenocarcinoma, with somatic mutation of KRAS occurring in ~30% of tumors. We previously identified somatic mutations and amplifications of the gene encoding RAS family GTPase RIT1 in lung adenocarcinomas. To explore the biological pathways regulated by RIT1 and how they relate to the oncogenic KRAS network, we performed quantitative proteomic, phosphoproteomic, and transcriptomic profiling of isogenic lung epithelial cells in which we ectopically expressed wild-type or cancer-associated variants of RIT1 and KRAS. We found that both mutant KRAS and mutant RIT1 promoted canonical RAS signaling and that overexpression of wild-type RIT1 partially phenocopied oncogenic RIT1 and KRAS, including induction of epithelial-to-mesenchymal transition. Our findings suggest that RIT1 protein abundance is a factor in its pathogenic function. Therefore, chromosomal amplification of wild-type RIT1 in lung and other cancers may be tumorigenic.


Assuntos
Oncogenes , Transdução de Sinais , Proteínas ras , Células HEK293 , Humanos , Proteínas ras/genética
5.
Cell Rep ; 36(9): 109597, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469736

RESUMO

CRISPR screens have accelerated the discovery of important cancer vulnerabilities. However, single-gene knockout phenotypes can be masked by redundancy among related genes. Paralogs constitute two-thirds of the human protein-coding genome, so existing methods are likely inadequate for assaying a large portion of gene function. Here, we develop paired guide RNAs for paralog genetic interaction mapping (pgPEN), a pooled CRISPR-Cas9 single- and double-knockout approach targeting more than 2,000 human paralogs. We apply pgPEN to two cell types and discover that 12% of human paralogs exhibit synthetic lethality in at least one context. We recover known synthetic lethal paralogs MEK1/MEK2, important drug targets CDK4/CDK6, and other synthetic lethal pairs including CCNL1/CCNL2. Additionally, we identify ten tumor suppressor paralog pairs whose compound loss promotes cell proliferation. These findings nominate drug targets and suggest that paralog genetic interactions could shape the landscape of positive and negative selection in cancer.


Assuntos
Duplicação Gênica , Genes Letais , Genes Sintéticos , Genes Supressores de Tumor , Genoma Humano , Neoplasias/genética , Adulto , Antineoplásicos/farmacologia , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
6.
Nat Commun ; 12(1): 4789, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373451

RESUMO

CRISPR-based cancer dependency maps are accelerating advances in cancer precision medicine, but adequate functional maps are limited to the most common oncogenes. To identify opportunities for therapeutic intervention in other rarer subsets of cancer, we investigate the oncogene-specific dependencies conferred by the lung cancer oncogene, RIT1. Here, genome-wide CRISPR screening in KRAS, EGFR, and RIT1-mutant isogenic lung cancer cells identifies shared and unique vulnerabilities of each oncogene. Combining this genetic data with small-molecule sensitivity profiling, we identify a unique vulnerability of RIT1-mutant cells to loss of spindle assembly checkpoint regulators. Oncogenic RIT1M90I weakens the spindle assembly checkpoint and perturbs mitotic timing, resulting in sensitivity to Aurora A inhibition. In addition, we observe synergy between mutant RIT1 and activation of YAP1 in multiple models and frequent nuclear overexpression of YAP1 in human primary RIT1-mutant lung tumors. These results provide a genome-wide atlas of oncogenic RIT1 functional interactions and identify components of the RAS pathway, spindle assembly checkpoint, and Hippo/YAP1 network as candidate therapeutic targets in RIT1-mutant lung cancer.


Assuntos
Neoplasias Pulmonares/genética , Oncogenes/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Feminino , Técnicas de Inativação de Genes , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Terapia de Alvo Molecular , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP , Proteínas ras
7.
Radiother Oncol ; 150: 174-180, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32565390

RESUMO

OBJECTIVES: Prostate cancer (PCa) treatment with radiation therapy (RT) has an excellent cure rate. However, Radiation-induced Erectile Dysfunction (RiED) is a common and irreversible toxicity impacting quality of life, and there is no FDA approved specific drug for RiED. We previously showed that prostate RT increased RhoA/ROCK signaling in the cavernous nerve (CN) and penile tissues, which may lead to RiED in rats. In this study, we investigated whether RhoA/ROCK pathway inhibition by a specific inhibitor called Hydroxyfasudil (HF) can improve RiED in our well-established rat model. MATERIALS/METHODS: Male Sprague-Dawley rats were randomized to the following groups: sham-RT, HF-only, RT-only, and RT + HF. Rats were either exposed to a single dose of 25 Gy prostate-confined RT or a sham procedure. 10 mg/kg HF or normal saline was injected intraperitoneally. Erectile function was evaluated by intracavernosal pressure (ICP) and mean arterial pressure (MAP) measurements at week 14 post-RT. Cavernous nerve (CN) injury was evaluated by transmission electron microscopy (TEM), and penile tissue fibrosis by Masson trichrome staining (MT). RESULTS: We have found that the HF treatment prior to RT showed significant (p < 0.001) improvement in ICP/MAP ratio, area under the curve, and maximum ICP value, compared to RT-alone rats. Furthermore, RT + HF treated rats exhibited increased CN myelination and decreased axonal atrophy, comparted to RT-only. HF treatment showed significantly decreased penile tissue fibrosis (p < 0.05) compared to RT-alone treated rats. CONCLUSION: Our results provide the first preclinical evidence that targeting RhoA/ROCK pathway by HF may provide a novel therapeutic option for the treatment of RiED.


Assuntos
Disfunção Erétil , Animais , Modelos Animais de Doenças , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Humanos , Masculino , Ereção Peniana , Pênis , Qualidade de Vida , Ratos , Ratos Sprague-Dawley , Proteína rhoA de Ligação ao GTP
8.
Cancers (Basel) ; 12(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326142

RESUMO

BACKGROUND: Pancreatic cancer (PC) is the fourth-most-deadly cancer in the United States with a 5-year survival rate of only 8%. Unfortunately, only 10-20% of PC patients are candidates for surgery, with the vast majority of patients with locally-advanced disease undergoing chemotherapy and/or radiation therapy (RT). Current treatments are clearly inadequate and novel strategies are crucially required. We investigated a novel tripartite treatment (combination of tumor targeted hyperthermia (HT), radiation therapy (RT), and immunotherapy (IT)) to alter immunosuppressive PC-tumor microenvironment (TME). (2). METHODS: In a syngeneic PC murine tumor model, HT was delivered before tumor-targeted RT, by a small animal radiation research platform (SARRP) followed by intraperitoneal injections of cytotoxic T-cell agonist antibody against OX40 (also known as CD134 or Tumor necrosis factor receptor superfamily member 4; TNFRSF4) that can promote T-effector cell activation and inhibit T-regulatory (T-reg) function. (3). RESULTS: Tripartite treatment demonstrated significant inhibition of tumor growth (p < 0.01) up to 45 days post-treatment with an increased survival rate compared to any monotherapy. Flow cytometric analysis showed a significant increase (p < 0.01) in cytotoxic CD8 and CD4+ T-cells in the TME of the tripartite treatment groups. There was no tripartite-treatment-related toxicity observed in mice. (4). CONCLUSIONS: Tripartite treatment could be a novel therapeutic option for PC patients.

9.
Cancers (Basel) ; 10(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486519

RESUMO

Pancreatic cancer (PC) has the highest mortality rate amongst all other cancers in both men and women, with a one-year relative survival rate of 20%, and a five-year relative survival rate of 8% for all stages of PC combined. The Whipple procedure, or pancreaticoduodenectomy, can increase survival for patients with resectable PC, however, less than 20% of patients are candidates for surgery at time of presentation. Most of the patients are diagnosed with advanced PC, often with regional and distant metastasis. In these advanced cases, chemotherapy and radiation have shown limited tumor control, and PC continues to be refractory to treatment and results in a poor survival outcome. In recent years, there has been intensive research on checkpoint inhibitor immunotherapy for PC, however, PC is characterized with dense stromal tissue and a tumor microenvironment (TME) that is highly immunosuppressive, which makes immunotherapy less effective. Interestingly, when immunotherapy is combined with radiation therapy (RT) and loco-regional hyperthermia (HT), it has demonstrated enhanced tumor responses. HT improves tumor killing via a variety of mechanisms, targeting both the tumor and the TME. Targeted HT raises the temperature of the tumor and surrounding tissues to 42⁻43 °C and makes the tumor more immunoresponsive. HT can also modulate the immune system of the TME by inducing and synthesizing heat shock proteins (HSP), which also activate an anti-tumor response. It is well known that HT can enhance RT-induced DNA damage in cancer cells and simultaneously help to oxygenate hypoxic regions. Thus, it is envisaged that combined HT and RT might have immunomodulatory effects in the PC-TME, making PC more responsive to immunotherapies. Moreover, the combined tripartite approach of immunotherapy, RT, and HT could reduce the overall toxicity associated with each individual therapy, while concomitantly enhancing the immunotherapeutic effect of overall individual therapies to treat local and metastatic PC. Thus, the use of a tripartite combinatorial approach could be promising and more efficacious than monotherapy or dual therapy to treat and increase the survival of the PC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...