Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Crit Care Med ; 25(1): e1-e11, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732845

RESUMO

OBJECTIVES: Viral lower respiratory tract infection (vLRTI) contributes to substantial morbidity and mortality in children. Diagnosis is typically confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) of nasopharyngeal specimens in hospitalized patients; however, it is unknown whether nasopharyngeal detection accurately reflects presence of virus in the lower respiratory tract (LRT). This study evaluates agreement between viral detection from nasopharyngeal specimens by RT-PCR compared with metagenomic next-generation RNA sequencing (RNA-Seq) from tracheal aspirates (TAs). DESIGN: This is an analysis of of a seven-center prospective cohort study. SETTING: Seven PICUs within academic children's hospitals in the United States. PATIENTS: Critically ill children (from 1 mo to 18 yr) who required mechanical ventilation via endotracheal tube for greater than or equal to 72 hours. INTERVENTIONS: We evaluated agreement in viral detection between paired upper and LRT samples. Results of clinical nasopharyngeal RT-PCR were compared with TA RNA-Seq. Positive and negative predictive agreement and Cohen's Kappa were used to assess agreement. MEASUREMENTS AND MAIN RESULTS: Of 295 subjects with paired testing available, 200 (68%) and 210 (71%) had positive viral testing by RT-PCR from nasopharyngeal and RNA-Seq from TA samples, respectively; 184 (62%) were positive by both nasopharyngeal RT-PCR and TA RNA-Seq for a virus, and 69 (23%) were negative by both methods. Nasopharyngeal RT-PCR detected the most abundant virus identified by RNA-Seq in 92.4% of subjects. Among the most frequent viruses detected, respiratory syncytial virus demonstrated the highest degree of concordance (κ = 0.89; 95% CI, 0.83-0.94), whereas rhinovirus/enterovirus demonstrated lower concordance (κ = 0.55; 95% CI, 0.44-0.66). Nasopharyngeal PCR was more likely to detect multiple viruses than TA RNA-Seq (54 [18.3%] vs 24 [8.1%], p ≤ 0.001). CONCLUSIONS: Viral nucleic acid detection in the upper versus LRT reveals good overall agreement, but concordance depends on the virus. Further studies are indicated to determine the utility of LRT sampling or the use of RNA-Seq to determine LRTI etiology.


Assuntos
Estado Terminal , Infecções Respiratórias , Criança , Humanos , Lactente , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estudos Prospectivos , Infecções Respiratórias/diagnóstico , Nasofaringe , Análise de Sequência de RNA
2.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009900

RESUMO

BACKGROUNDLower respiratory tract infection (LRTI) is a leading cause of death in children worldwide. LRTI diagnosis is challenging because noninfectious respiratory illnesses appear clinically similar and because existing microbiologic tests are often falsely negative or detect incidentally carried microbes, resulting in antimicrobial overuse and adverse outcomes. Lower airway metagenomics has the potential to detect host and microbial signatures of LRTI. Whether it can be applied at scale and in a pediatric population to enable improved diagnosis and treatment remains unclear.METHODSWe used tracheal aspirate RNA-Seq to profile host gene expression and respiratory microbiota in 261 children with acute respiratory failure. We developed a gene expression classifier for LRTI by training on patients with an established diagnosis of LRTI (n = 117) or of noninfectious respiratory failure (n = 50). We then developed a classifier that integrates the host LRTI probability, abundance of respiratory viruses, and dominance in the lung microbiome of bacteria/fungi considered pathogenic by a rules-based algorithm.RESULTSThe host classifier achieved a median AUC of 0.967 by cross-validation, driven by activation markers of T cells, alveolar macrophages, and the interferon response. The integrated classifier achieved a median AUC of 0.986 and increased the confidence of patient classifications. When applied to patients with an uncertain diagnosis (n = 94), the integrated classifier indicated LRTI in 52% of cases and nominated likely causal pathogens in 98% of those.CONCLUSIONLower airway metagenomics enables accurate LRTI diagnosis and pathogen identification in a heterogeneous cohort of critically ill children through integration of host, pathogen, and microbiome features.FUNDINGSupport for this study was provided by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Heart, Lung, and Blood Institute (UG1HD083171, 1R01HL124103, UG1HD049983, UG01HD049934, UG1HD083170, UG1HD050096, UG1HD63108, UG1HD083116, UG1HD083166, UG1HD049981, K23HL138461, and 5R01HL155418) as well as by the Chan Zuckerberg Biohub.


Assuntos
Microbiota , Infecções Respiratórias , Humanos , Criança , Metagenômica , Estado Terminal , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Pulmão
3.
Infect Control Hosp Epidemiol ; 44(1): 40-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35311638

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen in neonatal intensive care units (NICU) that confers significant morbidity and mortality. OBJECTIVE: Improving our understanding of MRSA transmission dynamics, especially among high-risk patients, is an infection prevention priority. METHODS: We investigated a cluster of clinical MRSA cases in the NICU using a combination of epidemiologic review and whole-genome sequencing (WGS) of isolates from clinical and surveillance cultures obtained from patients and healthcare personnel (HCP). RESULTS: Phylogenetic analysis identified 2 genetically distinct phylogenetic clades and revealed multiple silent-transmission events between HCP and infants. The predominant outbreak strain harbored multiple virulence factors. Epidemiologic investigation and genomic analysis identified a HCP colonized with the dominant MRSA outbreak strain who cared for most NICU patients who were infected or colonized with the same strain, including 1 NICU patient with severe infection 7 months before the described outbreak. These results guided implementation of infection prevention interventions that prevented further transmission events. CONCLUSIONS: Silent transmission of MRSA between HCP and NICU patients likely contributed to a NICU outbreak involving a virulent MRSA strain. WGS enabled data-driven decision making to inform implementation of infection control policies that mitigated the outbreak. Prospective WGS coupled with epidemiologic analysis can be used to detect transmission events and prompt early implementation of control strategies.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Recém-Nascido , Lactente , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Unidades de Terapia Intensiva Neonatal , Infecção Hospitalar/epidemiologia , Infecções Estafilocócicas/prevenção & controle , Virulência/genética , Estudos Prospectivos , Filogenia , Surtos de Doenças/prevenção & controle , Controle de Infecções/métodos , Genômica
4.
mSystems ; 8(1): e0067122, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507688

RESUMO

The continued emergence of SARS-CoV-2 variants is one of several factors that may cause false-negative viral PCR test results. Such tests are also susceptible to false-positive results due to trace contamination from high viral titer samples. Host immune response markers provide an orthogonal indication of infection that can mitigate these concerns when combined with direct viral detection. Here, we leverage nasopharyngeal swab RNA-seq data from patients with COVID-19, other viral acute respiratory illnesses, and nonviral conditions (n = 318) to develop support vector machine classifiers that rely on a parsimonious 2-gene host signature to diagnose COVID-19. We find that optimal classifiers include an interferon-stimulated gene that is strongly induced in COVID-19 compared with nonviral conditions, such as IFI6, and a second immune-response gene that is more strongly induced in other viral infections, such as GBP5. The IFI6+GBP5 classifier achieves an area under the receiver operating characteristic curve (AUC) greater than 0.9 when evaluated on an independent RNA-seq cohort (n = 553). We further provide proof-of-concept demonstration that the classifier can be implemented in a clinically relevant RT-qPCR assay. Finally, we show that its performance is robust across common SARS-CoV-2 variants and is unaffected by cross-contamination, demonstrating its utility for improved accuracy of COVID-19 diagnostics. IMPORTANCE In this work, we study upper respiratory tract gene expression to develop and validate a 2-gene host-based COVID-19 diagnostic classifier and then demonstrate its implementation in a clinically practical qPCR assay. We find that the host classifier has utility for mitigating false-negative results, for example due to SARS-CoV-2 variants harboring mutations at primer target sites, and for mitigating false-positive viral PCR results due to laboratory cross-contamination. Both types of error carry serious consequences of either unrecognized viral transmission or unnecessary isolation and contact tracing. This work is directly relevant to the ongoing COVID-19 pandemic given the continued emergence of viral variants and the continued challenges of false-positive PCR assays. It also suggests the feasibility of pan-respiratory virus host-based diagnostics that would have value in congregate settings, such as hospitals and nursing homes, where unrecognized respiratory viral transmission is of particular concern.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Pandemias , Sensibilidade e Especificidade
5.
Nat Commun ; 13(1): 5107, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042219

RESUMO

The SARS-CoV-2 pandemic has differentially impacted populations across race and ethnicity. A multi-omic approach represents a powerful tool to examine risk across multi-ancestry genomes. We leverage a pandemic tracking strategy in which we sequence viral and host genomes and transcriptomes from nasopharyngeal swabs of 1049 individuals (736 SARS-CoV-2 positive and 313 SARS-CoV-2 negative) and integrate them with digital phenotypes from electronic health records from a diverse catchment area in Northern California. Genome-wide association disaggregated by admixture mapping reveals novel COVID-19-severity-associated regions containing previously reported markers of neurologic, pulmonary and viral disease susceptibility. Phylodynamic tracking of consensus viral genomes reveals no association with disease severity or inferred ancestry. Summary data from multiomic investigation reveals metagenomic and HLA associations with severe COVID-19. The wealth of data available from residual nasopharyngeal swabs in combination with clinical data abstracted automatically at scale highlights a powerful strategy for pandemic tracking, and reveals distinct epidemiologic, genetic, and biological associations for those at the highest risk.


Assuntos
COVID-19 , Pandemias , COVID-19/epidemiologia , Genoma Viral , Estudo de Associação Genômica Ampla , Humanos , SARS-CoV-2/genética
6.
Lancet Microbe ; 3(4): e284-e293, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35544065

RESUMO

BACKGROUND: Lower respiratory tract infections (LRTI) are a leading cause of critical illness and mortality in mechanically ventilated children; however, the pathogenic microbes frequently remain unknown. We combined traditional diagnostics with metagenomic next generation sequencing (mNGS) to evaluate the cause of LRTI in critically ill children. METHODS: We conducted a prospective, multicentre cohort study of critically ill children aged 31 days to 17 years with respiratory failure requiring mechanical ventilation (>72 h) in the USA. By combining bacterial culture and upper respiratory viral PCR testing with mNGS of tracheal aspirate collected from all patients within 24 h of intubation, we determined the prevalence, age distribution, and seasonal variation of viral and bacterial respiratory pathogens detected by either method in children with or without LRTI. FINDINGS: Between Feb 26, 2015, and Dec 31, 2017, of the 514 enrolled patients, 397 were eligible and included in the study (276 children with LRTI and 121 with no evidence of LRTI). A presumptive microbiological cause was identified in 255 (92%) children with LRTI, with respiratory syncytial virus (127 [46%]), Haemophilus influenzae (70 [25%]), and Moraxella catarrhalis (65 [24%]) being most prevalent. mNGS identified uncommon pathogens including Ureaplasma parvum and Bocavirus. Co-detection of viral and bacterial pathogens occurred in 144 (52%) patients. Incidental carriage of potentially pathogenic microbes occurred in 82 (68%) children without LRTI, with rhinovirus (30 [25%]) being most prevalent. Respiratory syncytial virus (p<0·0001), H influenzae (p=0·0006), and M catarrhalis (p=0·0002) were most common in children younger than 5 years. Viral and bacterial LRTI occurred predominantly during winter months. INTERPRETATION: These findings demonstrate that respiratory syncytial virus, H influenzae, and M catarrhalis contribute disproportionately to severe paediatric LRTI, co-infections are common, and incidental carriage of potentially pathogenic microbes occurs frequently. Further, we provide a framework for future epidemiological and emerging pathogen surveillance studies, highlighting the potential for metagenomics to enhance clinical diagnosis. FUNDING: US National Institutes of Health and CZ Biohub.


Assuntos
Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Bactérias/genética , Criança , Estudos de Coortes , Estado Terminal , Haemophilus influenzae , Humanos , Metagenômica , Moraxella catarrhalis , Estudos Prospectivos , Respiração Artificial , Infecções Respiratórias/diagnóstico , Estados Unidos
7.
BMC Public Health ; 22(1): 456, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255849

RESUMO

BACKGROUND: During the COVID-19 pandemic within the United States, much of the responsibility for diagnostic testing and epidemiologic response has relied on the action of county-level departments of public health. Here we describe the integration of genomic surveillance into epidemiologic response within Humboldt County, a rural county in northwest California. METHODS: Through a collaborative effort, 853 whole SARS-CoV-2 genomes were generated, representing ~58% of the 1,449 SARS-CoV-2-positive cases detected in Humboldt County as of March 12, 2021. Phylogenetic analysis of these data was used to develop a comprehensive understanding of SARS-CoV-2 introductions to the county and to support contact tracing and epidemiologic investigations of all large outbreaks in the county. RESULTS: In the case of an outbreak on a commercial farm, viral genomic data were used to validate reported epidemiologic links and link additional cases within the community who did not report a farm exposure to the outbreak. During a separate outbreak within a skilled nursing facility, genomic surveillance data were used to rule out the putative index case, detect the emergence of an independent Spike:N501Y substitution, and verify that the outbreak had been brought under control. CONCLUSIONS: These use cases demonstrate how developing genomic surveillance capacity within local public health departments can support timely and responsive deployment of genomic epidemiology for surveillance and outbreak response based on local needs and priorities.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Busca de Comunicante , Surtos de Doenças , Genômica , Humanos , Pandemias , Filogenia , Vigilância em Saúde Pública , SARS-CoV-2/genética
8.
Shock ; 57(6): 180-190, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066510

RESUMO

BACKGROUND: Limited studies have functionally evaluated the heterogeneity in early ex vivo immune responses during sepsis. Our aim was to characterize early sepsis ex vivo functional immune response heterogeneity by studying whole blood endotoxin responses and derive a transcriptional metric of ex vivo endotoxin response. METHODS: Blood collected within 24 h of hospital presentation from 40 septic patients was divided into two fractions and incubated with media (unstimulated) or endotoxin. Supernatants and cells were isolated, and responses measured using: supernatant cytokines, lung endothelial permeability after supernatant exposure, and RNA expression. A transcriptomic signature was derived in unstimulated cells to predict the ex vivo endotoxin response. The signature was tested in a separate cohort of 191 septic patients to evaluate for association with clinical outcome. Plasma biomarkers were quantified to measure in vivo host inflammation. RESULTS: Ex vivo response to endotoxin varied and was unrelated to immunosuppression, white blood cell count, or the causative pathogen. Thirty-five percent of patients demonstrated a minimal response to endotoxin, suggesting early immunosuppression. High ex vivo cytokine production by stimulated blood cells correlated with increased in vitro pulmonary endothelial cell permeability and was associated with attenuated in vivo host inflammation. A four-gene signature of endotoxin response detectable without the need for a functional assay was identified. When tested in a separate cohort of septic patients, its expression was inversely associated with hospital mortality. CONCLUSIONS: An attenuated ex vivo endotoxin response in early sepsis is associated with greater host in vivo inflammation and a worse clinical outcome.


Assuntos
Sepse , Transcriptoma , Tolerância à Endotoxina , Endotoxinas , Humanos , Tolerância Imunológica , Imunidade , Inflamação , Lipopolissacarídeos
9.
Microbiol Spectr ; 9(3): e0139721, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817208

RESUMO

Human clinical studies investigating use of convalescent plasma (CP) for treatment of coronavirus disease 2019 (COVID-19) have produced conflicting results. Outcomes in these studies may vary at least partly due to different timing of CP administration relative to symptom onset. The mechanisms of action of CP include neutralizing antibodies but may extend beyond virus neutralization to include normalization of blood clotting and dampening of inflammation. Unresolved questions include the minimum therapeutic titer in the CP units or CP recipient as well as the optimal timing of administration. Here, we show that treatment of macaques with CP within 24 h of infection does not reduce viral shedding in nasal or lung secretions compared to controls and does not detectably improve any clinical endpoint. We also demonstrate that CP administration does not impact viral sequence diversity in vivo, although the selection of a viral sequence variant in both macaques receiving normal human plasma was suggestive of immune pressure. Our results suggest that CP, administered to medium titers, has limited efficacy, even when given very early after infection. Our findings also contribute information important for the continued development of the nonhuman primate model of COVID-19. These results should inform interpretation of clinical studies of CP in addition to providing insights useful for developing other passive immunotherapies and vaccine strategies. IMPORTANCE Antiviral treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain very limited. One treatment that was explored beginning early in the pandemic (and that is likely to be tested early in future pandemics) is plasma collected from people who have recovered from coronavirus disease 2019 (COVID-19), known as convalescent plasma (CP). We tested if CP reduces viral shedding or disease in a nonhuman primate model. Our results demonstrate that administration of CP 1 day after SARS-CoV-2 infection had no significant impact on viral loads, clinical disease, or sequence diversity, although treatment with normal human plasma resulted in selection of a specific viral variant. Our results demonstrate that passive immunization with CP, even during early infection, provided no significant benefit in a nonhuman primate model of SARS-CoV-2 infection.


Assuntos
COVID-19/terapia , Imunização Passiva/métodos , SARS-CoV-2 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Antivirais/uso terapêutico , COVID-19/imunologia , Modelos Animais de Doenças , Humanos , Imunidade , Pulmão/patologia , Macaca mulatta , Pandemias , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral , Replicação Viral
10.
Clin Infect Dis ; 73(Suppl 2): S127-S135, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32821935

RESUMO

BACKGROUND: There is an urgent need to understand the dynamics and risk factors driving ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission during shelter-in-place mandates. METHODS: We offered SARS-CoV-2 reverse-transcription polymerase chain reaction (PCR) and antibody (Abbott ARCHITECT IgG) testing, regardless of symptoms, to all residents (aged ≥4 years) and workers in a San Francisco census tract (population: 5174) at outdoor, community-mobilized events over 4 days. We estimated SARS-CoV-2 point prevalence (PCR positive) and cumulative incidence (antibody or PCR positive) in the census tract and evaluated risk factors for recent (PCR positive/antibody negative) vs prior infection (antibody positive/PCR negative). SARS-CoV-2 genome recovery and phylogenetics were used to measure viral strain diversity, establish viral lineages present, and estimate number of introductions. RESULTS: We tested 3953 persons (40% Latinx; 41% White; 9% Asian/Pacific Islander; and 2% Black). Overall, 2.1% (83/3871) tested PCR positive: 95% were Latinx and 52% were asymptomatic when tested; 1.7% of census tract residents and 6.0% of workers (non-census tract residents) were PCR positive. Among 2598 tract residents, estimated point prevalence of PCR positives was 2.3% (95% confidence interval [CI], 1.2%-3.8%): 3.9% (95% CI, 2.0%-6.4%) among Latinx persons vs 0.2% (95% CI, .0-.4%) among non-Latinx persons. Estimated cumulative incidence among residents was 6.1% (95% CI, 4.0%-8.6%). Prior infections were 67% Latinx, 16% White, and 17% other ethnicities. Among recent infections, 96% were Latinx. Risk factors for recent infection were Latinx ethnicity, inability to shelter in place and maintain income, frontline service work, unemployment, and household income <$50 000/year. Five SARS-CoV-2 phylogenetic lineages were detected. CONCLUSIONS: SARS-CoV-2 infections from diverse lineages continued circulating among low-income, Latinx persons unable to work from home and maintain income during San Francisco's shelter-in-place ordinance.


Assuntos
COVID-19 , SARS-CoV-2 , Abrigo de Emergência , Humanos , Filogenia , São Francisco/epidemiologia
11.
Eur Respir J ; 57(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33008935

RESUMO

We sought to determine whether temporal changes in the lower airway microbiome are associated with ventilator-associated pneumonia (VAP) in children.Using a multicentre prospective study of children aged 31 days to 18 years requiring mechanical ventilation support for >72 h, daily tracheal aspirates were collected and analysed by sequencing of the 16S rRNA gene. VAP was assessed using 2008 Centers for Disease Control and Prevention paediatric criteria. The association between microbial factors and VAP was evaluated using joint longitudinal time-to-event modelling, matched case-control comparisons and unsupervised clustering.Out of 366 eligible subjects, 66 (15%) developed VAP at a median of 5 (interquartile range 3-5) days post intubation. At intubation, there was no difference in total bacterial load (TBL), but Shannon diversity and the relative abundance of Streptococcus, Lactobacillales and Prevotella were lower for VAP subjects versus non-VAP subjects. However, higher TBL on each sequential day was associated with a lower hazard (hazard ratio 0.39, 95% CI 0.23-0.64) for developing VAP, but sequential values of diversity were not associated with VAP. Similar findings were observed from the matched analysis and unsupervised clustering. The most common dominant VAP pathogens included Prevotella species (19%), Pseudomonas aeruginosa (14%) and Streptococcus mitis/pneumoniae (10%). Mycoplasma and Ureaplasma were also identified as dominant organisms in several subjects.In mechanically ventilated children, changes over time in microbial factors were marginally associated with VAP risk, although these changes were not suitable for predicting VAP in individual patients. These findings suggest that focusing exclusively on pathogen burden may not adequately inform VAP diagnosis.


Assuntos
Microbiota , Pneumonia Associada à Ventilação Mecânica , Criança , Humanos , Unidades de Terapia Intensiva , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Estudos Prospectivos , RNA Ribossômico 16S/genética
12.
Nat Commun ; 11(1): 5854, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203890

RESUMO

SARS-CoV-2 infection is characterized by peak viral load in the upper airway prior to or at the time of symptom onset, an unusual feature that has enabled widespread transmission of the virus and precipitated a global pandemic. How SARS-CoV-2 is able to achieve high titer in the absence of symptoms remains unclear. Here, we examine the upper airway host transcriptional response in patients with COVID-19 (n = 93), other viral (n = 41) or non-viral (n = 100) acute respiratory illnesses (ARIs). Compared with other viral ARIs, COVID-19 is characterized by a pronounced interferon response but attenuated activation of other innate immune pathways, including toll-like receptor, interleukin and chemokine signaling. The IL-1 and NLRP3 inflammasome pathways are markedly less responsive to SARS-CoV-2, commensurate with a signature of diminished neutrophil and macrophage recruitment. This pattern resembles previously described distinctions between symptomatic and asymptomatic viral infections and may partly explain the propensity for pre-symptomatic transmission in COVID-19. We further use machine learning to build 27-, 10- and 3-gene classifiers that differentiate COVID-19 from other ARIs with AUROCs of 0.981, 0.954 and 0.885, respectively. Classifier performance is stable across a wide range of viral load, suggesting utility in mitigating false positive or false negative results of direct SARS-CoV-2 tests.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Imunidade Inata/genética , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Diagnóstico Diferencial , Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Nasofaringe/imunologia , Nasofaringe/virologia , Pandemias , Pneumonia Viral/diagnóstico , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , SARS-CoV-2 , Sensibilidade e Especificidade , Carga Viral
14.
J Am Stat Assoc ; 115(531): 1472-1487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33012903

RESUMO

The sample frequency spectrum (SFS), or histogram of allele counts, is an important summary statistic in evolutionary biology, and is often used to infer the history of population size changes, migrations, and other demographic events affecting a set of populations. The expected multipopulation SFS under a given demographic model can be efficiently computed when the populations in the model are related by a tree, scaling to hundreds of populations. Admixture, back-migration, and introgression are common natural processes that violate the assumption of a tree-like population history, however, and until now the expected SFS could be computed for only a handful of populations when the demographic history is not a tree. In this article, we present a new method for efficiently computing the expected SFS and linear functionals of it, for demographies described by general directed acyclic graphs. This method can scale to more populations than p reviously possible for complex demographic histories including admixture. We apply our method to an 8-population SFS to estimate the timing and strength of a proposed "basal Eurasian" admixture event in human history. We implement and release our method in a new open-source software package momi2.

15.
EClinicalMedicine ; 27: 100518, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32864588

RESUMO

BACKGROUND: Most data on the clinical presentation, diagnostics, and outcomes of patients with COVID-19 have been presented as case series without comparison to patients with other acute respiratory illnesses. METHODS: We examined emergency department patients between February 3 and March 31, 2020 with an acute respiratory illness who were tested for SARS-CoV-2. We determined COVID-19 status by PCR and metagenomic next generation sequencing (mNGS). We compared clinical presentation, diagnostics, treatment, and outcomes. FINDINGS: Among 316 patients, 33 tested positive for SARS-CoV-2; 31 without COVID-19 tested positive for another respiratory virus. Among patients with additional viral testing (27/33), no SARS-CoV-2 co-infections were identified. Compared to those who tested negative, patients with COVID-19 reported longer symptoms duration (median 7d vs. 3d, p < 0.001). Patients with COVID-19 were more often hospitalized (79% vs. 56%, p = 0.014). When hospitalized, patients with COVID-19 had longer hospitalizations (median 10.7d vs. 4.7d, p < 0.001) and more often developed ARDS (23% vs. 3%, p < 0.001). Most comorbidities, medications, symptoms, vital signs, laboratories, treatments, and outcomes did not differ by COVID-19 status. INTERPRETATION: While we found differences in clinical features of COVID-19 compared to other acute respiratory illnesses, there was significant overlap in presentation and comorbidities. Patients with COVID-19 were more likely to be admitted to the hospital, have longer hospitalizations and develop ARDS, and were unlikely to have co-existent viral infections. FUNDING: National Center for Advancing Translational Sciences, National Heart Lung Blood Institute, National Institute of Allergy and Infectious Diseases, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative.

16.
medRxiv ; 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766602

RESUMO

During COVID19 and other viral pandemics, rapid generation of host and pathogen genomic data is critical to tracking infection and informing therapies. There is an urgent need for efficient approaches to this data generation at scale. We have developed a scalable, high throughput approach to generate high fidelity low pass whole genome and HLA sequencing, viral genomes, and representation of human transcriptome from single nasopharyngeal swabs of COVID19 patients.

17.
Transfusion ; 60(9): 1960-1969, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738079

RESUMO

BACKGROUND: Strategies to reduce platelet (PLT) bacterial contamination include donor screening, skin disinfection, sample diversion, bacterial culture, pathogen reduction (PR), and day-of-transfusion tests. We report bacterial sepsis following a pathogen-reduced PLT transfusion. CASE REPORT: An adult male with relapsed acute lymphoblastic leukemia was successfully treated for central catheter-associated Staphylococcus aureus bacteremia. A peripherally inserted central catheter (PICC) was placed. Chills, rigors, and flushing developed immediately after PICC-infused pathogen-reduced PLTs, progressing to septic shock requiring intensive care management. METHODS: PICC and peripheral blood (PB), transfused bag saline flushes (TBFs), environmental samples, and the pathogen-reduced untransfused co-component (CC) were cultured. Plasma metagenomic and bacterial isolate whole-genome sequencing; PLT mitochondrial DNA (mtDNA) testing of untransfused CC and TBF; CC testing for amotosalen (S-59)/S-59 photoproducts; isolate PR studies (INTERCEPT); and TBF polymerase chain reaction for recipient Y-chromosome DNA were performed. RESULTS: PB and PICC cultures grew Acinetobacter calcoaceticus/baumannii complex (ACBC). TBF was gram-positive; mass spectrometry identified ACBC and Staphylococcus saprophyticus (SS). CC Gram stain and cultures were negative. Environmental cultures, some done after decontamination, were ACBC/SS negative. Posttransfusion patient plasma and TBF ACBC sequences were genetically identical. No Y-chromosome signal was detected in TBF. S-59 photoproducts and evidence of mtDNA amplification inhibition were found in the CC. Spiking PR studies showed >5.9-log inactivation for both isolates. Donor skin cultures for Acinetobacter were negative. CONCLUSION: CC sterility, PR studies, residual S-59 photoproducts, and mtDNA amplification inhibition suggest successful PR. Unidentified environmental sources and inherent or acquired bag defects may have contributed to postmanufacturing pathogen-reduced PLT contamination.


Assuntos
Acinetobacter baumannii , Acinetobacter calcoaceticus , Infecções Bacterianas , Transfusão de Plaquetas , Plaquetoferese , Sepse , Staphylococcus saprophyticus , Reação Transfusional , Adulto , Infecções Bacterianas/sangue , Infecções Bacterianas/etiologia , Infecções Bacterianas/microbiologia , Humanos , Masculino , Sepse/sangue , Sepse/etiologia , Sepse/microbiologia , Reação Transfusional/sangue , Reação Transfusional/microbiologia
18.
Microbiol Resour Announc ; 9(24)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527780

RESUMO

The complete genome sequence of a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) isolate obtained from a nasopharyngeal swab from a patient with COVID-19 in Bangladesh is reported.

19.
medRxiv ; 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32511476

RESUMO

We studied the host transcriptional response to SARS-CoV-2 by performing metagenomic sequencing of upper airway samples in 238 patients with COVID-19, other viral or non-viral acute respiratory illnesses (ARIs). Compared to other viral ARIs, COVID-19 was characterized by a diminished innate immune response, with reduced expression of genes involved in toll-like receptor and interleukin signaling, chemokine binding, neutrophil degranulation and interactions with lymphoid cells. Patients with COVID-19 also exhibited significantly reduced proportions of neutrophils and macrophages, and increased proportions of goblet, dendritic and B-cells, compared to other viral ARIs. Using machine learning, we built 26-, 10- and 3-gene classifiers that differentiated COVID-19 from other acute respiratory illnesses with AUCs of 0.980, 0.950 and 0.871, respectively. Classifier performance was stable at low viral loads, suggesting utility in settings where direct detection of viral nucleic acid may be unsuccessful. Taken together, our results illuminate unique aspects of the host transcriptional response to SARS-CoV-2 in comparison to other respiratory viruses and demonstrate the feasibility of COVID-19 diagnostics based on patient gene expression.

20.
medRxiv ; 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511488

RESUMO

BACKGROUND: Emerging data on the clinical presentation, diagnostics, and outcomes of patients with COVID-19 have largely been presented as case series. Few studies have compared these clinical features and outcomes of COVID-19 to other acute respiratory illnesses. METHODS: We examined all patients presenting to an emergency department in San Francisco, California between February 3 and March 31, 2020 with an acute respiratory illness who were tested for SARS-CoV-2. We determined COVID-19 status by PCR and metagenomic next generation sequencing (mNGS). We compared demographics, comorbidities, symptoms, vital signs, and laboratory results including viral diagnostics using PCR and mNGS. Among those hospitalized, we determined differences in treatment (antibiotics, antivirals, respiratory support) and outcomes (ICU admission, ICU interventions, acute respiratory distress syndrome, cardiac injury). FINDINGS: In a cohort of 316 patients, 33 (10%) tested positive for SARS-CoV-2; 31 patients, all without COVID-19, tested positive for another respiratory virus (16%). Among patients with additional viral testing, no co-infections with SARS-CoV-2 were identified by PCR or mNGS. Patients with COVID-19 reported longer symptoms duration (median 7 vs. 3 days), and were more likely to report fever (82% vs. 44%), fatigue (85% vs. 50%), and myalgias (61% vs 27%); p<0.001 for all comparisons. Lymphopenia (55% vs 34%, p=0.018) and bilateral opacities on initial chest radiograph (55% vs. 24%, p=0.001) were more common in patients with COVID-19. Patients with COVID-19 were more often hospitalized (79% vs. 56%, p=0.014). Of 186 hospitalized patients, patients with COVID-19 had longer hospitalizations (median 10.7d vs. 4.7d, p<0.001) and were more likely to develop ARDS (23% vs. 3%, p<0.001). Most comorbidities, home medications, signs and symptoms, vital signs, laboratory results, treatment, and outcomes did not differ by COVID-19 status. INTERPRETATION: While we found differences in clinical features of COVID-19 compared to other acute respiratory illnesses, there was significant overlap in presentation and comorbidities. Patients with COVID-19 were more likely to be admitted to the hospital, have longer hospitalizations and develop ARDS, and were unlikely to have co-existent viral infections. These findings enhance understanding of the clinical characteristics of COVID-19 in comparison to other acute respiratory illnesses. .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...