Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22504, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110507

RESUMO

Application of organic residues such as farm manure and biochar in various agricultural environments have shown positive effects on soil carbon sequestration. However, there is a lack of consensus regarding the agronomical benefits of a single and small dose of biochar and farm manure in arid alkaline soils. Therefore, a field experiment with the given treatments (1) control (no amendment), (2) acidified manure (AM) at 300 kg ha-1, (3) nitrogen (N) enriched biochar (NeB) at 3 Mg ha-1, and (4) an equal combination of AM + NeB (150 kg ha-1 AM + 1.5 Mg ha-1 NeB)) was conducted in a typical cotton-wheat cropping system. A parallel laboratory incubation study with the same amendments was carried out to account for soil carbon dioxide emission (CO2). The N enrichment of biochar and its co-application with acidified manure increased soil mineral N (NO3- and NH4+) in the topsoil (0-15 cm), and increased total N uptake (25.92% to 69.91%) in cotton over control, thus reducing N losses and increased uptake over control. Compared to the control, co-application of AM + NeB significantly improved soil N and P bioavailability, leading to increased plant biomass N, P, and K (32%, 40%, 6%, respectively) uptake over control. The plant's physiological and growth improvements [chlorophyll (+ 28.2%), height (+ 47%), leaf area (+ 17%), number of bolls (+ 7%), and average boll weight (+ 8%)] increased the agronomic yield in the first-season crop cotton by 25%. However, no positive response was observed in the second season wheat crop. This field study improved our understanding that co-application of acidified manure and N-enriched biochar in small dose can be a strategy to achieve short-term agronomic benefits and carbon sequestration in the long run.


Assuntos
Esterco , Nitrogênio , Triticum , Agricultura , Solo/química , Carvão Vegetal/química , Gossypium , Fertilizantes
2.
Environ Pollut ; 332: 121810, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201571

RESUMO

Plastics have become an emerging pollutant threatening the sustainability of agroecosystems and global food security. Biochar, a pro-ecosystem/negative carbon emission technology can be exploited as a circular approach for the conservation of plastics contaminated agricultural soils. However, relatively few studies have focused on the effects of biochar on plant growth and soil biochemical properties in a microplastic contaminated soil. This study investigated the effects of a cotton stalk (Gossypium hirsutum L.) biochar on plant growth, soil microbes, and enzyme activity in PVC microplastic (PVC-MPs) contaminated soil. Biochar amendment increased shoot dry matter production in PVC-MPs contaminated soil. However, PVC-MPs alone significantly reduced the soil urease and dehydrogenase activity, soil organic and microbial biomass carbon, bacterial/fungal community percentage, and their abundance (16S rRNA and 18S rRNA genes, respectively). Interestingly, biochar amendment with PVC-MPs significantly alleviated the hazardous effects. Principal component and redundancy analysis of the soil properties, bacterial 16S rRNA genes, and fungal ITS in the biochar-amended PVC-MPs treatments revealed that the observed traits formed an obvious cluster compared to non-biochar treatments. To sum up, this study indicated that PVC-MPs contamination was not benign, while biochar shielded the hazardous effects and sustained soil microbial functionality.


Assuntos
Microplásticos , Poluentes do Solo , Ecossistema , Plásticos , Solo/química , RNA Ribossômico 16S , Microbiologia do Solo , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Carbono , Poluentes do Solo/toxicidade , Poluentes do Solo/química
3.
PLoS One ; 15(8): e0238057, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32845917

RESUMO

Arthropods are a major soil fauna group, and have the potential to substantially influence the spatial and temporal variability of soil greenhouse gas (GHG) sinks and sources. The overall effect of soil-inhabiting arthropods on soil GHG fluxes still remains poorly quantified since the majority of the available data comes from laboratory experiments, is often controversial, and has been limited to a few species. The main objective of this study was to provide first insights into field-level carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) release of soil-inhabiting larvae of the Scarabaeidae family. Larvae of the genus Melolontha were excavated at various sites in west-central and southern Germany, covering a wide range of different larval developmental stages, larval activity levels, and vegetation types. Excavated larvae were immediately incubated in the field to measure their GHG production. Gaseous carbon release of individual larvae showed a large inter- and intra-site variability which was strongly correlated to larval biomass. This correlation persisted when upscaling individual CO2 and CH4 production to the plot scale. Field release estimates for Melolontha spp. were subsequently upscaled to the European level to derive the first regional GHG release estimates for members of the Scarabaeidae family. Estimates ranged between 10.42 and 409.53 kt CO2 yr-1, and 0.01 and 1.36 kt CH4 yr-1. Larval N2O release was only sporadically observed and not upscaled. For one site, a comparison of field- and laboratory-based GHG production measurements was conducted to assess potential biases introduced by transferring Scarabaeidae larvae to artificial environments. Release strength and variability of captive larvae decreased significantly within two weeks and the correlation between larval biomass and gaseous carbon production disappeared, highlighting the importance of field measurements. Overall, our data show that Scarabaeidae larvae can be significant soil GHG sources and should not be neglected in soil GHG flux research.


Assuntos
Besouros/metabolismo , Gases de Efeito Estufa/análise , Animais , Biomassa , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Besouros/química , Besouros/crescimento & desenvolvimento , Gases de Efeito Estufa/metabolismo , Larva/química , Larva/metabolismo , Metano/análise , Metano/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Solo/química , Solo/parasitologia
4.
Sci Rep ; 10(1): 13816, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796884

RESUMO

Biochar may serve as a tool to sustainably mitigate climate change via carbon sequestration and by improving soil fertility. Biochar has shown to retain nitrate in its pores, which increases with an organic coating of the inner surfaces and residence time in soil ("aging"). Here we investigated the plant accessibility of the captured nitrate in field-aged biochar, as a pre-requisite for developing carbon-based N fertilization techniques with environmental benefits. Based on previous results, we hypothesized that part of the biochar-captured nitrate would remain unavailable for plants. A two-factorial greenhouse experiment was designed, where the N was applied either as Ca(NO3)2 or as N captured in field-aged biochar at five increasing N doses to quinoa and perennial ryegrass in pots. Interestingly, the biochar-captured N was as plant available as the mineral nitrate, except for the highest dosage. Refuting our hypothesis, no significant amounts of N were extractable at the end of the study from the biochar-soil mixtures with repeated-extraction protocols. Thus, N captured by biochar may improve the N use efficiency in agriculture. Further research should evaluate the role of biochar particle size, root morphology, mycorrhization, and soil moisture (variations) for nitrate retrieval from biochar particles by plants because the captured biochar N was less available in the field as under present controlled conditions.

5.
PeerJ ; 7: e7373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396445

RESUMO

Biochar, that is, carbonized biomass similar to charcoal, has been used in acute medical treatment of animals for many centuries. Since 2010, livestock farmers increasingly use biochar as a regular feed supplement to improve animal health, increase nutrient intake efficiency and thus productivity. As biochar gets enriched with nitrogen-rich organic compounds during the digestion process, the excreted biochar-manure becomes a more valuable organic fertilizer causing lower nutrient losses and greenhouse gas emissions during storage and soil application. Scientists only recently started to investigate the mechanisms of biochar in the different stages of animal digestion and thus most published results on biochar feeding are based so far on empirical studies. This review summarizes the state of knowledge up to the year 2019 by evaluating 112 relevant scientific publications on the topic to derive initial insights, discuss potential mechanisms behind observations and identify important knowledge gaps and future research needs. The literature analysis shows that in most studies and for all investigated farm animal species, positive effects on different parameters such as toxin adsorption, digestion, blood values, feed efficiency, meat quality and/or greenhouse gas emissions could be found when biochar was added to feed. A considerable number of studies provided statistically non-significant results, though tendencies were mostly positive. Rare negative effects were identified in regard to the immobilization of liposoluble feed ingredients (e.g., vitamin E or Carotenoids) which may limit long-term biochar feeding. We found that most of the studies did not systematically investigate biochar properties (which may vastly differ) and dosage, which is a major drawback for generalizing results. Our review demonstrates that the use of biochar as a feed additive has the potential to improve animal health, feed efficiency and livestock housing climate, to reduce nutrient losses and greenhouse gas emissions, and to increase the soil organic matter content and thus soil fertility when eventually applied to soil. In combination with other good practices, co-feeding of biochar may thus have the potential to improve the sustainability of animal husbandry. However, more systematic multi-disciplinary research is definitely needed to arrive at generalizable recommendations.

6.
Chemosphere ; 214: 743-753, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30293028

RESUMO

Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it increased biochars' microporosity (per mass of organic carbon). For most biochars, mesoporosity was also increased. The adsorption behavior was enhanced for all metal-blended biochars, although with significant differences across species: Mg(OH)2-blended biochar produced at 400 °C showed the highest phosphate adsorption capacity (Langmuir Qmax approx. 250 mg g-1), while AlCl3-blended biochar produced also at 400 °C showed the highest arsenate adsorption (Langmuir Qmax approx. 14 mg g-1). Significant differences were present, even for the same biochar, with respect to the investigated oxyanions. This indicates that biochar properties need to be optimized for each application, but also that this optimization can be achieved with tools such as metal-blending. These results constitute a significant contribution towards the production of designer biochars.


Assuntos
Biomassa , Carvão Vegetal/química , Metais/química , Adsorção
7.
Sci Total Environ ; 651(Pt 2): 2354-2364, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30336425

RESUMO

Biochar can reduce both nitrous oxide (N2O) emissions and nitrate (NO3-) leaching, but refining biochar's use for estimating these types of losses remains elusive. For example, biochar properties such as ash content and labile organic compounds may induce transient effects that alter N-based losses. Thus, the aim of this meta-analysis was to assess interactions between biochar-induced effects on N2O emissions and NO3- retention, regarding the duration of experiments as well as soil and land use properties. Data were compiled from 88 peer-reviewed publications resulting in 608 observations up to May 2016 and corresponding response ratios were used to perform a random effects meta-analysis, testing biochar's impact on cumulative N2O emissions, soil NO3- concentrations and leaching in temperate, semi-arid, sub-tropical, and tropical climate. The overall N2O emissions reduction was 38%, but N2O emission reductions tended to be negligible after one year. Overall, soil NO3- concentrations remained unaffected while NO3- leaching was reduced by 13% with biochar; greater leaching reductions (>26%) occurred over longer experimental times (i.e. >30 days). Biochar had the strongest N2O-emission reducing effect in paddy soils (Anthrosols) and sandy soils (Arenosols). The use of biochar reduced both N2O emissions and NO3- leaching in arable farming and horticulture, but it did not affect these losses in grasslands and perennial crops. In conclusion, the time-dependent impact on N2O emissions and NO3- leaching is a crucial factor that needs to be considered in order to develop and test resilient and sustainable biochar-based N loss mitigation strategies. Our results provide a valuable starting point for future biochar-based N loss mitigation studies.

8.
Glob Chang Biol ; 24(9): 3875-3885, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28370878

RESUMO

Future increase in atmospheric CO2 concentrations will potentially enhance grassland biomass production and shift the functional group composition with consequences for ecosystem functioning. In the "GiFACE" experiment (Giessen Free Air Carbon dioxide Enrichment), fertilized grassland plots were fumigated with elevated CO2 (eCO2 ) year-round during daylight hours since 1998, at a level of +20% relative to ambient concentrations (in 1998, aCO2 was 364 ppm and eCO2 399 ppm; in 2014, aCO2 was 397 ppm and eCO2 518 ppm). Harvests were conducted twice annually through 23 years including 17 years with eCO2 (1998 to 2014). Biomass consisted of C3 grasses and forbs, with a small proportion of legumes. The total aboveground biomass (TAB) was significantly increased under eCO2 (p = .045 and .025, at first and second harvest). The dominant plant functional group grasses responded positively at the start, but for forbs, the effect of eCO2 started out as a negative response. The increase in TAB in response to eCO2 was approximately 15% during the period from 2006 to 2014, suggesting that there was no attenuation of eCO2 effects over time, tentatively a consequence of the fertilization management. Biomass and soil moisture responses were closely linked. The soil moisture surplus (c. 3%) in eCO2 manifested in the latter years was associated with a positive biomass response of both functional groups. The direction of the biomass response of the functional group forbs changed over the experimental duration, intensified by extreme weather conditions, pointing to the need of long-term field studies for obtaining reliable responses of perennial ecosystems to eCO2 and as a basis for model development.


Assuntos
Biomassa , Dióxido de Carbono/farmacologia , Pradaria , Dióxido de Carbono/análise , Ecossistema , Fabaceae/efeitos dos fármacos , Fabaceae/crescimento & desenvolvimento , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Solo
9.
Sci Total Environ ; 618: 1210-1223, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29126641

RESUMO

Recent studies have demonstrated the importance of the nutrient status of biochar and soils prior to its inclusion in particular agricultural systems. Pre-treatment of nutrient-reactive biochar, where nutrients are loaded into pores and onto surfaces, gives improved yield outcomes compared to untreated biochar. In this study we have used a wide selection of spectroscopic and microscopic techniques to investigate the mechanisms of nutrient retention in a high temperature wood biochar, which had negative effects on Chenopodium quinoa above ground biomass yield when applied to the system without prior nutrient loading, but positive effects when applied after composting. We have compared non-composted biochar (BC) with composted biochar (BCC) to elucidate the differences which may have led to these results. The results of our investigation provide evidence for a complex series of reactions during composting, where dissolved nutrients are first taken up into biochar pores along a concentration gradient and through capillary action, followed by surface sorption and retention processes which block biochar pores and result in deposition of a nutrient-rich organomineral (plaque) layer. The lack of such pretreatment in the BC samples would render it reactive towards nutrients in a soil-fertilizer system, making it a competitor for, rather than provider of, nutrients for plant growth.

10.
Front Microbiol ; 8: 1976, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093701

RESUMO

Continuously rising atmospheric CO2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2) concentrations (20% higher compared to current atmospheric concentrations) at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE) sites resulted in a more than 2-fold increase of long-term N2O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO2 (aCO2). We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected eCO2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term eCO2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing). Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot), which were fumigated with eCO2 and aCO2, respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial community abundance and composition were detected, they were not linked to CO2 level but rather determined by differences in soil parameters (e.g., soil moisture content) due to the localization of the GiFACE sets in the experimental field. We concluded that +20% eCO2 had little to no effect on the overall microbial community involved in N-cycling in the soil but that spatial heterogeneity over extended periods had shaped microbial communities at particular sites in the field. Hence, microbial community composition and abundance alone cannot explain the functional differences leading to higher N2O emissions under eCO2 and future studies should aim at exploring the active members of the soil microbial community.

11.
Nat Commun ; 8(1): 1089, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057875

RESUMO

Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to address climate change and soil degradation by carbon sequestration, reducing soil-borne greenhouse-gas emissions and increasing soil nutrient retention. Biochar was shown to promote plant growth, especially when combined with nutrient-rich organic matter, e.g., co-composted biochar. Plant growth promotion was explained by slow release of nutrients, although a mechanistic understanding of nutrient storage in biochar is missing. Here we identify a complex, nutrient-rich organic coating on co-composted biochar that covers the outer and inner (pore) surfaces of biochar particles using high-resolution spectro(micro)scopy and mass spectrometry. Fast field cycling nuclear magnetic resonance, electrochemical analysis and gas adsorption demonstrated that this coating adds hydrophilicity, redox-active moieties, and additional mesoporosity, which strengthens biochar-water interactions and thus enhances nutrient retention. This implies that the functioning of biochar in soil is determined by the formation of an organic coating, rather than biochar surface oxidation, as previously suggested.

12.
PLoS One ; 12(2): e0171214, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28199354

RESUMO

Slow release of nitrate by charred organic matter used as a soil amendment (i.e. biochar) was recently suggested as potential mechanism of nutrient delivery to plants which may explain some agronomic benefits of biochar. So far, isolated soil-aged and composted biochar particles were shown to release considerable amounts of nitrate only in extended (>1 h) extractions ("slow release"). In this study, we quantified nitrate and ammonium release by biochar-amended soil and compost during up to 167 h of repeated extractions in up to six consecutive steps to determine the effect of biochar on the overall mineral nitrogen retention. We used composts produced from mixed manures amended with three contrasting biochars prior to aerobic composting and a loamy soil that was amended with biochar three years prior to analysis and compared both to non-biochar amended controls. Composts were extracted with 2 M KCl at 22°C and 65°C, after sterilization, after treatment with H2O2, after removing biochar particles or without any modification. Soils were extracted with 2 M KCl at 22°C. Ammonium was continuously released during the extractions, independent of biochar amendment and is probably the result of abiotic ammonification. For the pure compost, nitrate extraction was complete after 1 h, while from biochar-amended composts, up to 30% of total nitrate extracted was only released during subsequent extraction steps. The loamy soil released 70% of its total nitrate amount in subsequent extractions, the biochar-amended soil 58%. However, biochar amendment doubled the amount of total extractable nitrate. Thus, biochar nitrate capture can be a relevant contribution to the overall nitrate retention in agroecosystems. Our results also indicate that the total nitrate amount in biochar amended soils and composts may frequently be underestimated. Furthermore, biochars could prevent nitrate loss from agroecosystems and may be developed into slow-release fertilizers to reduce global N fertilizer demands.


Assuntos
Carvão Vegetal/química , Nitratos/análise , Nitratos/metabolismo , Solo/química , Compostos de Amônio/análise , Fertilizantes/análise , Peróxido de Hidrogênio/química , Nitratos/isolamento & purificação , Esterilização , Temperatura , Fatores de Tempo
13.
J Environ Qual ; 45(4): 1196-204, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27380067

RESUMO

Biochar (BC) has been shown to increase the potential for N retention in agricultural soils. However, the form of N retained and its strength of retention are poorly understood. Here, we examined if the N retained could be readily extractable by standard methods and if the amount of N retained varied with BC field ageing. We investigated soil and field-aged BC (BC) particles of a field experiment (sandy soil amended with BC at 0, 15, and 30 t ha) under two watering regimes (irrigated and rain-fed). Throughout the study, greater nitrate than ammonium retention was observed with BC addition in topsoil (0-15 cm). Subsoil (15-30 cm) nitrate concentrations were reduced in BC treatments, indicating reduced nitrate leaching (standard 2 mol L KCl method). The mineral-N release of picked BC particles was examined with different methods: standard 2 mol L KCl extraction; repeated (10×) extraction in 2 mol L KCl at 22 ± 2°C and 80°C (M); electro-ultrafiltration (M); repeated water + KCl long-term shaking (M); and M plus one repeated shaking at 80°C (M). Nitrate amounts captured by BC particles were several-fold greater than those in the BC-amended soil. Compared with M, standard 2 mol L KCl or electro-ultrafiltration extractions retrieved only 13 and 30% of the total extractable nitrates, respectively. Our results suggest that "nitrate capture" by BC may reduce nitrate leaching in the field and that the inefficiency of standard extraction methods deserves closer research attention to decipher mechanisms for reactive N management.


Assuntos
Carvão Vegetal , Nitratos , Solo , Poluentes do Solo
14.
Rapid Commun Mass Spectrom ; 30(7): 963-72, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969939

RESUMO

RATIONALE: Because of the wide-ranging appearance and high soil organic carbon (C) content of grasslands, their ecosystems play an important role in the global C cycle. Thus, even small changes in input or output rates lead to significant changes in the soil C content, thereby affecting atmospheric [CO2 ]. Our aim was to examine if a higher C supply provided under elevated CO2 will increase the soil C pool. Special attention was given to respirational processes, where CO2 emission rates and its sources (plant vs. soil) were considered. METHODS: The Giessen-FACE experiment started in 1998 with a moderate CO2 enrichment of +20% and +30% above ambient on an extensively managed grassland. The experiment consists of three control plots where no CO2 is applied, three plots where [CO2 ] is enriched by +20% and one plot receiving [CO2 ] +30%. To exclude initial CO2 step increase effects, a detailed examination of respirational processes over 30 months was carried out after 6 years of CO2 enrichment starting in June 2004. At that time, the δ(13) C signature of the enrichment-CO2 was switched from -25 ‰ to -48 ‰ without a concomitant change in CO2 concentration. RESULTS: After 9 years, the fraction of new C under [CO2 ] +20% was 37 ± 5.4% in the top 7.5 cm but this decreased with depth. No CO2 effect on soil carbon content was detected. Between June 2004 and December 2006, elevated [CO2 ] +20% increased the ecosystem respiration by 13%. The contribution of root respiration to soil respiration was 37 ± 13% (5 cm) and 43 ± 14% (10 cm) for [CO2 ] +20% and 35 ± 13% and 40 ± 13% for [CO2 ] +30%, respectively. CONCLUSIONS: Our findings of an increased C turnover without a net soil C sequestration suggest that the sink strength of grassland ecosystems might decrease in the future, because the additional C may quickly be released as CO2 to the atmosphere. Copyright © 2016 John Wiley & Sons, Ltd.

16.
PLoS One ; 10(7): e0131665, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147694

RESUMO

BACKGROUND: Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. METHODS AND RESULTS: Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. CONCLUSIONS: Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources.


Assuntos
Ar/análise , Dióxido de Carbono/química , Euryarchaeota/metabolismo , Metano/metabolismo , Solo/química , Microbiologia do Solo
17.
Sci Rep ; 5: 11080, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26057083

RESUMO

Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars' positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BC(comp)). Conversely, addition of 2% (w/w) untreated biochar (BC(pure)) decreased the biomass to 60% of the control. Growth-promoting (BC(comp)) as well as growth-reducing (BC(pure)) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BC(comp) was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.


Assuntos
Carvão Vegetal , Chenopodium/crescimento & desenvolvimento , Nitratos/metabolismo , Biomassa
18.
Glob Chang Biol ; 21(8): 3152-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846203

RESUMO

A key part of the uncertainty in terrestrial feedbacks on climate change is related to how and to what extent nitrogen (N) availability constrains the stimulation of terrestrial productivity by elevated CO2 (eCO2 ), and whether or not this constraint will become stronger over time. We explored the ecosystem-scale relationship between responses of plant productivity and N acquisition to eCO2 in free-air CO2 enrichment (FACE) experiments in grassland, cropland and forest ecosystems and found that: (i) in all three ecosystem types, this relationship was positive, linear and strong (r(2) = 0.68), but exhibited a negative intercept such that plant N acquisition was decreased by 10% when eCO2 caused neutral or modest changes in productivity. As the ecosystems were markedly N limited, plants with minimal productivity responses to eCO2 likely acquired less N than ambient CO2 -grown counterparts because access was decreased, and not because demand was lower. (ii) Plant N concentration was lower under eCO2 , and this decrease was independent of the presence or magnitude of eCO2 -induced productivity enhancement, refuting the long-held hypothesis that this effect results from growth dilution. (iii) Effects of eCO2 on productivity and N acquisition did not diminish over time, while the typical eCO2 -induced decrease in plant N concentration did. Our results suggest that, at the decennial timescale covered by FACE studies, N limitation of eCO2 -induced terrestrial productivity enhancement is associated with negative effects of eCO2 on plant N acquisition rather than with growth dilution of plant N or processes leading to progressive N limitation.


Assuntos
Dióxido de Carbono/farmacologia , Nitrogênio/metabolismo , Plantas/metabolismo , Agricultura , Mudança Climática , Ecossistema , Florestas , Poaceae
19.
Funct Plant Biol ; 43(1): 26-39, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480439

RESUMO

The rising concentration of carbon dioxide in the atmosphere ([CO2]) has a direct effect on terrestrial vegetation through shifts in the rates of photosynthetic carbon uptake and transpirational water-loss. Free Air CO2 Enrichment (FACE) experiments aim to predict the likely responses of plants to increased [CO2] under normal climatic conditions. The Giessen FACE system operates a lower [CO2] enrichment regime (480µmolmol-1) than standard FACE (550-600µmolmol-1), permitting the analysis of a mixed species temperate meadow under a [CO2] level equivalent to that predicted in 25-30 years. We analysed the physiological and morphological responses of six species to investigate the effect of moderate [CO2] on spring biomass production. Carbon dioxide enrichment stimulated leaf photosynthetic rates and supressed respiration, contributing to enhanced net assimilation and a 23% increase in biomass. The capacity for photosynthetic assimilation was unaffected by [CO2] enrichment, with no downregulation of rates of carboxylation of Rubisco or regeneration of ribulose-1,5-bisphosphate. Foliar N content was also not influenced by increased [CO2]. Enhanced [CO2] reduced stomatal size, but stomatal density and leaf area index remained constant, suggesting that the effect on gas exchange was minimal.

20.
J Agric Food Chem ; 61(39): 9401-11, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24004410

RESUMO

Effects of biomass types (bark mulch versus sugar beet pulp) and carbonization processing conditions (temperature, residence time, and phase of reaction medium) on the chemical characteristics of hydrochars were examined by elemental analysis, solid-state ¹³C NMR, and chemical and biochemical oxygen demand measurements. Bark hydrochars were more aromatic than sugar beet hydrochars produced under the same processing conditions. The presence of lignin in bark led to a much lower biochemical oxygen demand (BOD) of bark than sugar beet and increasing trends of BOD after carbonization. Compared with those prepared at 200 °C, 250 °C hydrochars were more aromatic and depleted of carbohydrates. Longer residence time (20 versus 3 h) at 250 °C resulted in the enrichment of nonprotonated aromatic carbons. Both bark and sugar beet pulp underwent deeper carbonization during water hydrothermal carbonization than during steam hydrothermal carbonization (200 °C, 3 h) in terms of more abundant aromatic C but less carbohydrate C in water hydrochars.


Assuntos
Beta vulgaris/química , Carboidratos/química , Fertilizantes/análise , Jardinagem/métodos , Casca de Planta/química , Raízes de Plantas/química , Solo/química , Carboidratos/análise , Fertilizantes/economia , Indústria de Processamento de Alimentos/economia , Agricultura Florestal/economia , Jardinagem/economia , Temperatura Alta , Resíduos Industriais/análise , Resíduos Industriais/economia , Esterco , Odorantes , Oxigênio/química , Vapor , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...