Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 25(1): 56-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26189564

RESUMO

Energetics was analyzed for Trp-cage miniprotein in water to elucidate the solvation effect in heat denaturation. The solvation free energy was computed for a set of protein structures at room and high temperatures with all-atom molecular dynamics simulation combined with the solution theory in the energy representation, and its correlations were investigated against the intramolecular (structural) energy of the protein and the average interaction energy of the protein with the solvent water. It was observed both at room and high temperatures that the solvation free energy is anticorrelated to the structural energy and varies in parallel to the electrostatic component of the protein-water interaction energy without correlations to the van der Waals and excluded-volume components. When the set of folded structures sampled at room temperature was compared with the set of unfolded ones at high temperature, it was found that the preference order of the two sets is in correspondence to the van der Waals and excluded-volume components in the sum of the protein intramolecular and protein-water intermolecular interactions and is not distinguished by the electrostatic component.


Assuntos
Temperatura Alta , Simulação de Dinâmica Molecular , Peptídeos/química , Desnaturação Proteica , Água/química , Conformação Proteica , Solventes/química
2.
J Phys Chem B ; 118(47): 13404-8, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25014739

RESUMO

Thermodynamic stability boundary in the structure-H methane + bromocyclopentane mixed hydrate system was measured at pressures from 20 to 100 MPa. The thermodynamic stability boundary of the methane + bromocyclopentane mixed hydrate exhibits anomalous behavior under conditions at high pressures and high temperatures. This phenomenon is due to the elimination and substitution reactions of bromocyclopentane to cyclopentene and cyclopentanol, respectively. The nucleophilic reactions of bromocyclopentane are mainly advanced in the liquid bromocyclopentane-rich phases, while it is restrained when bromocyclopentane is enclathrated in hydrate cage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...