Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(7): e0180897, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700668

RESUMO

The combination of irradiated fibroblast feeder cells and Rho kinase inhibitor, Y-267362, converts primary epithelial cells growing in vitro into an undifferentiated adult stem cell-like state that is characterized by long-term proliferation. This cell culture method also maintains the proliferation of adult epithelial stem cells from various tissues. Both primary and adult stem cells retain their tissue-specific differentiation potential upon removal of the culture conditions. Due to the ability to modulate the proliferation and differentiation of the cells, this method is referred to as conditional reprogramming and it is increasingly being used in studies of tumor heterogeneity, personalized medicine and regenerative medicine. However, little is known about the biology of these conditionally reprogrammed (CR) cells. Previously we showed that ß-catenin activation, a hallmark of stem cells in vivo, occurs in CR human ectocervical cells (HECs). Here we show that ß-catenin-dependent transcription is necessary for the induction of epithelial stem cell markers, and that ß-catenin is activated via a non-canonical pathway that is independent of Wnt and Akt/GSK-3. Active Akt actually decreases due to increased mTOR signaling, with a consequent increase in dephosphorylated, active GSK-3. Despite the increase in active GSK-3, ß-catenin associates with protein phosphatase 2A (PP2A) and is activated. Inhibition of PP2A catalytic activity reduces both the level of active ß-catenin and the acute induction of stem cell markers, suggesting an important role for PP2A in the activation of ß-catenin. Moreover, we demonstrate similar results using human prostate and breast cells, indicating that these changes are not restricted to ectocervical epithelial cells and may represent a more fundamental property of conditional reprogramming.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , beta Catenina/metabolismo , Linhagem Celular , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Proteínas Proto-Oncogênicas c-akt/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , beta Catenina/genética , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(49): 20035-40, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23169653

RESUMO

The combination of irradiated fibroblast feeder cells and Rho kinase inhibitor, Y-27632, conditionally induces an indefinite proliferative state in primary mammalian epithelial cells. These conditionally reprogrammed cells (CRCs) are karyotype-stable and nontumorigenic. Because self-renewal is a recognized property of stem cells, we investigated whether Y-27632 and feeder cells induced a stem-like phenotype. We found that CRCs share characteristics of adult stem cells and exhibit up-regulated expression of α6 and ß1 integrins, ΔNp63α, CD44, and telomerase reverse transcriptase, as well as decreased Notch signaling and an increased level of nuclear ß-catenin. The induction of CRCs is rapid (occurs within 2 d) and results from reprogramming of the entire cell population rather than the selection of a minor subpopulation. CRCs do not overexpress the transcription factor sets characteristic of embryonic or induced pluripotent stem cells (e.g., Sox2, Oct4, Nanog, or Klf4). The induction of CRCs is also reversible, and removal of Y-27632 and feeders allows the cells to differentiate normally. Thus, when CRCs from ectocervical epithelium or tracheal epithelium are placed in an air-liquid interface culture system, the cervical cells form a well differentiated stratified squamous epithelium, whereas the tracheal cells form a ciliated airway epithelium. We discuss the diagnostic and therapeutic opportunities afforded by a method that can generate adult stem-like cells in vitro without genetic manipulation.


Assuntos
Células-Tronco Adultas/citologia , Amidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Piridinas/farmacologia , Células-Tronco Adultas/efeitos dos fármacos , Antígenos de Superfície/metabolismo , Western Blotting , Reprogramação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Alimentadoras , Citometria de Fluxo , Humanos , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Integrina beta1/metabolismo , Cariotipagem , Fator 4 Semelhante a Kruppel , Reação em Cadeia da Polimerase em Tempo Real , Telomerase/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
J Virol ; 86(17): 9465-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22740411

RESUMO

The high-risk human papillomavirus type 16 (HPV-16) E5 protein (16E5) induces tumors in a transgenic mouse model and may contribute to early stages of cervical carcinogenesis. Although high-risk E5 expression is generally thought to be lost during the progression to cervical carcinoma following integration of HPV DNA into the host genome, episomal viral DNA has been documented in a subset of HPV-16-positive malignant lesions. Numerous studies have shown that transcripts that could potentially encode 16E5 are present in cervical biopsy specimens and cervical cancer cell lines, but the presence of E5 protein has been demonstrated in only two reports that have not been corroborated. In the present study, we show that trypsin cleavage of 16E5 generates a unique four-amino-acid C-terminal peptide (FLIT) that serves as a marker for E5 expression in transfected cells and epithelial cell lines containing integrated and episomal HPV-16 DNA. Following trypsin cleavage, reversed-phase chromatography and mass spectrometry (MS) were used to detect FLIT. Immunoprecipitation assays using a newly generated anti-16E5 antibody confirmed that 16E5 was solely responsible for the FLIT signal, and deuterated FLIT peptide provided an internal standard that enabled us to quantify the number of 16E5 molecules per cell. We show that 16E5 is expressed in the Caski but not in the SiHa cervical cancer cell line, suggesting that 16E5 may contribute to the malignant phenotype of some cervical cancers, even in cells exclusively containing an integrated HPV genome.


Assuntos
Células Epiteliais/química , Papillomavirus Humano 16/química , Proteínas Oncogênicas Virais/análise , Sequência de Aminoácidos , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Espectrometria de Massas/métodos , Camundongos , Dados de Sequência Molecular , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Mapeamento de Peptídeos , Neoplasias do Colo do Útero/química , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
4.
J Virol ; 85(21): 10968-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21849434

RESUMO

The human papillomavirus type 16 (HPV-16) E5 oncoprotein is embedded in membranes of the endoplasmic reticulum and nuclear envelope with its C terminus exposed to the cytoplasm. Among other activities, E5 cooperates with the HPV E6 oncoprotein to induce koilocytosis in human cervical cells and keratinocytes in vitro. The effect of E5 on infected cells may rely on its interactions with various cellular proteins. In this study we identify calpactin I, a heterotetrameric, Ca(2+)- and phospholipid-binding protein complex that regulates membrane fusion, as a new cellular target for E5. Both the annexin A2 and p11 subunits of calpactin I coimmunoprecipitate with E5 in COS cells and in human epithelial cell lines, and an intact E5 C terminus is required for binding. Moreover, E5-expressing cells exhibit a perinuclear redistribution of annexin A2 and p11 and show increased fusion of perinuclear membrane vesicles. The C terminus of E5 is required for both the perinuclear redistribution of calpactin I and increased formation of perinuclear vacuoles. These results support the hypothesis that the E5-induced relocalization of calpactin I to the perinuclear region promotes perinuclear membrane fusion, which may underlie the development of koilocytotic vacuoles.


Assuntos
Anexina A2/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/patogenicidade , Proteínas Oncogênicas Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Imunoprecipitação , Ligação Proteica , Mapeamento de Interação de Proteínas
5.
J Virol ; 84(20): 10619-29, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20686024

RESUMO

The human papillomavirus type 16 E5 oncoprotein (16E5) enhances acute, ligand-dependent activation of the epidermal growth factor receptor (EGFR) and concomitantly alkalinizes endosomes, presumably by binding to the 16-kDa "c" subunit of the V-ATPase proton pump (16K) and inhibiting V-ATPase function. However, the relationship between 16K binding, endosome alkalinization, and altered EGFR signaling remains unclear. Using an antibody that we generated against 16K, we found that 16E5 associated with only a small fraction of endogenous 16K in keratinocytes, suggesting that it was unlikely that E5 could significantly affect V-ATPase function by direct inhibition. Nevertheless, E5 inhibited the acidification of endosomes, as determined by a new assay using a biologically active, pH-sensitive fluorescent EGF conjugate. Since we also found that 16E5 did not alter cell surface EGF binding, the number of EGFRs on the cell surface, or the endocytosis of prebound EGF, we postulated that it might be blocking the fusion of early endosomes with acidified vesicles. Our studies with pH-sensitive and -insensitive fluorescent EGF conjugates and fluorescent dextran confirmed that E5 prevented endosome maturation (acidification and enlargement) by inhibiting endosome fusion. The E5-dependent defect in vesicle fusion was not due to detectable disruption of actin, tubulin, vimentin, or cytokeratin filaments, suggesting that membrane fusion was being directly affected rather than vesicle transport. Perhaps most importantly, while bafilomycin A(1) (like E5) binds to 16K and inhibits endosome acidification, it did not mimic the ability of E5 to inhibit endosome enlargement or the trafficking of EGF. Thus, 16E5 alters EGF endocytic trafficking via a pH-independent inhibition of vesicle fusion.


Assuntos
Fator de Crescimento Epidérmico/fisiologia , Papillomavirus Humano 16/fisiologia , Papillomavirus Humano 16/patogenicidade , Proteínas Oncogênicas Virais/fisiologia , Animais , Transporte Biológico Ativo , Células COS , Células Cultivadas , Chlorocebus aethiops , Endossomos/fisiologia , Endossomos/virologia , Receptores ErbB/fisiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Papillomavirus Humano 16/genética , Humanos , Concentração de Íons de Hidrogênio , Proteínas Oncogênicas Virais/genética , ATPases Translocadoras de Prótons/antagonistas & inibidores , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...