Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(5): e0043523, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38661375

RESUMO

Acinetobacter baumannii is highly resistant to antimicrobial agents, and XDR strains have become widespread. A. baumannii has developed resistance to colistin, which is considered the last resort against XDR Gram-negative bacteria, mainly caused by lipooligosaccharide (LOS) phosphoethanolamine (pEtN) and/or galactosamine (GalN) modifications induced by mutations that activate the two-component system (TCS) pmrAB. Although PmrAB of A. baumannii has been recognized as a drug resistance factor, its function as TCS, including its regulatory genes and response factors, has not been fully elucidated. In this study, to clarify the function of PmrAB as TCS, we elucidated the regulatory genes (regulon) of PmrAB via transcriptome analysis using pmrAB-activated mutant strains. We discovered that PmrAB responds to low pH, Fe2+, Zn2+, and Al3+. A. baumannii selectively recognizes Fe2+ rather than Fe3+, and a novel region ExxxE, in addition to the ExxE motif sequence, is involved in the environmental response. Furthermore, PmrAB participates in the phosphoethanolamine modification of LOS on the bacterial surface in response to metal ions such as Al3+, contributing to the attenuation of Al3+ toxicity and development of resistance to colistin and polymyxin B in A. baumannii. This study demonstrates that PmrAB in A. baumannii not only regulates genes that play an important role in drug resistance but is also involved in responses to environmental stimuli such as metal ions and pH, and this stimulation induces LOS modification. This study reveals the importance of PmrAB in the environmental adaptation and antibacterial resistance emergence mechanisms of A. baumannii. IMPORTANCE: Antimicrobial resistance (AMR) is a pressing global issue in human health. Acinetobacter baumannii is notably high on the World Health Organization's list of bacteria for which new antimicrobial agents are urgently needed. Colistin is one of the last-resort drugs used against extensively drug-resistant (XDR) Gram-negative bacteria. However, A. baumannii has become increasingly resistant to colistin, primarily by modifying its lipooligosaccharide (LOS) via activating mutations in the two-component system (TCS) PmrAB. This study comprehensively elucidates the detailed mechanism of drug resistance of PmrAB in A. baumannii as well as its biological functions. Understanding the molecular biology of these molecules, which serve as drug resistance factors and are involved in environmental recognition mechanisms in bacteria, is crucial for developing fundamental solutions to the AMR problem.


Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , Etanolaminas , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Etanolaminas/farmacologia , Etanolaminas/metabolismo , Antibacterianos/farmacologia , Metais/metabolismo , Metais/farmacologia , Fatores de Transcrição
2.
One Health ; 16: 100524, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37363218

RESUMO

Objectives: The third-generation cephalosporin (3GC)-resistant E. coli strains have been detected worldwide in humans and animals. Hence, in this study, we evaluated the prevalence and genetic characteristics of 3GC-resistant E. coli in livestock, farmers, and patients to further analyse if livestock serves as a potential reservoir of antimicrobial-resistant bacteria. Methods: Faecal samples were collected from 330 healthy livestock (216 cattle and 114 swine), 61 healthy livestock farmers (52 cattle farmers and 9 swine farmers), and 68 non-duplicate 3GC-resistant E. coli isolates were also obtained from the clinical specimens of patients in Japan between 2013 and 2015. Genes associated with resistance in 3GC-resistant E. coli were identified using polymerase chain reaction (PCR) and DNA sequencing. Genotypic diversity was determined by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Results: We obtained 39 and 17 non-duplicated 3GC-resistant E. coli strains from healthy livestock (33 cattle and six swine) and livestock farmers, respectively. All isolates carried either CTX-M-type extended-spectrum ß-lactamase or plasmid-mediated AmpC ß-lactamase genes, with CTX-M-14 being the most frequent. CTX-M producers from livestock and patients belonged to 22 and 19 different sequence types (STs), respectively, and only three STs were the same. Among the 3GC-resistant E. coli from livestock and farmers, three types of CTX-M producers have shown similar characteristics (CTX-M genotype, ST, PFGE patterns, and antimicrobial susceptibilities) and were identified as clonal isolates shared among their farms. Conclusions: Our study findings indicate that CTX-M-14 is predominant in Japan. No distinct relationship was observed between the 3GC-resistant E. coli isolated from livestock and patients; however, some clonal relatedness was observed between the isolates from livestock and farmers due to their close contact.

3.
Microbiol Spectr ; 10(5): e0192822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173297

RESUMO

Colistin, which targets lipopolysaccharide (LPS), is used as a last-resort drug against severe infections caused by drug-resistant Acinetobacter baumannii. However, A. baumannii possesses two colistin-resistance mechanisms. LPS modification caused by mutations in pmrAB genes is often observed in clinical isolates of multidrug-resistant Gram-negative pathogens. In addition to LPS modification, A. baumannii has a unique colistin resistance mechanism, a complete loss of LPS due to mutations in the lpxACD genes, which are involved in LPS biosynthesis. This study aimed to elucidate the detailed mechanism of the emergence of colistin-resistant A. baumannii using strains with the same genetic background. Various colistin-resistant strains were generated experimentally using colistin alone and in combination with other antimicrobials, such as meropenem and ciprofloxacin, and the mutation spectrum was analyzed. In vitro selection of A. baumannii in the presence of colistin led to the emergence of strains harboring mutations in lpxACD genes, resulting in LPS-deficient colistin-resistant strains. However, combination of colistin with other antimicrobials led to the selection of pmrAB mutant strains, resulting in strains with modified LPS (LPS-modified strains). Further, the LPS-deficient strains showed decreased fitness and increased susceptibility to many antibiotics and disinfectants. As LPS-deficient strains have a higher biological cost than LPS-modified strains, our findings suggested that pmrAB mutants are more likely to be isolated in clinical settings. We provide novel insights into the mechanisms of resistance to colistin and provide substantial solutions along with precautions for facilitating current research and treatment of colistin-resistant A. baumannii infections. IMPORTANCE Acinetobacter baumannii has developed resistance to various antimicrobial drugs, and its drug-resistant strains cause nosocomial infections. Controlling these infections has become a global clinical challenge. Carbapenem antibiotics are the frontline treatment drugs for infectious diseases caused by A. baumannii. For patients with infections caused by carbapenem-resistant A. baumannii, colistin-based therapy is often the only treatment option. However, A. baumannii readily acquires resistance to colistin. Many patients infected with colistin-resistant A. baumannii undergo colistin treatment before isolation of the colistin-resistant strain, and it is hypothesized that colistin resistance predominantly emerges under selective pressure during colistin therapy. Although the concomitant use of colistin and carbapenems has been reported to have a synergistic effect in vitro against carbapenem-resistant A. baumannii strains, our observations strongly suggest the need for attention to the emergence of strains with a modified lipopolysaccharide during treatment.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Desinfetantes , Humanos , Colistina/farmacologia , Colistina/uso terapêutico , Acinetobacter baumannii/genética , Lipopolissacarídeos , Infecções por Acinetobacter/tratamento farmacológico , Meropeném/farmacologia , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Carbapenêmicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Desinfetantes/farmacologia , Farmacorresistência Bacteriana Múltipla/genética
4.
Microbiol Immunol ; 66(4): 157-165, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34914844

RESUMO

Bacillus cereus is an opportunistic pathogen that often causes severe infections such as bacteremia, with sphingomyelinase (SMase) being a crucial virulence factor. Although many strains of B. cereus carry the SMase gene, they are classified as SMase-producing and nonproducing strains. The reason for different SMase production among B. cereus strains remains unknown. In this study, we investigated the relationship between SMase and the PlcR transcriptional regulation system to clarify the mechanism leading to varied SMase production among B. cereus strains. We analyzed the sequence of the PlcR box, which is a transcriptional regulator-binding site, located at the promoter region of SMase and phosphatidylcholine-specific phospholipase C. Based on differences in the PlcR box sequences, we classified the B. cereus strains into three groups (I, II, and III). SMase expression and activity were hardly detected in Group III strains. In Group I strains, SMase activity and its expression were maximal at the onset of the stationary phase and decreased during the stationary phase, whereas those were maintained during the stationary phase in Group II stains. On injection of B. cereus strains into mice or incubation with macrophages for phagocytosis assay, the SMase-producing Group I and II strains showed higher pathogenicity than Group III strains. These findings suggest that PlcR box sequence in B. cereus affects the production of SMase, which may provide important clinical information for the detection of highly pathogenic B. cereus strains.


Assuntos
Bacillus cereus , Esfingomielina Fosfodiesterase , Animais , Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Camundongos , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Transativadores
5.
Pathogens ; 10(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802578

RESUMO

Herein, we investigated the effect of bacterial lipooligosaccharides (LOS), from Acinetobacter baumannii, on the expression of pro-inflammatory genes that play an essential role in bacterial clearance. LAD2 human mast cells were stimulated with LOS derived from two strains of A. baumannii-ATCC 19606 and MDRA T14. LOS exposure induced the expression of genes for pro-inflammatory mediators, including TNF-α, IL-8, LTC4S, CCL4, and TLR4. The mRNA expression levels of a majority of the pro-inflammatory genes, except TLR4, in A. baumannii-LOS stimulated mast cells were increased. Moreover, co-culture of neutrophils with the supernatant obtained from LOS (ATCC 19606 and MDRA T14)-induced LAD2 cells increased the transmigration of neutrophils, which plays a critical role in the early protection against bacterial infections. The results of the present study suggest that LOS could be involved in the pathogenicity of A. baumannii by inducing inflammatory responses via mast cells and that IL-8 is involved in recruiting neutrophils in response to bacterial invasion.

6.
Mol Immunol ; 129: 39-44, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271353

RESUMO

Conventional antibiotics used for the treatment of severe infections such as sepsis and septic shock confer immunomodulatory benefits. However, the growing problem of multidrug resistant infections has led to an increase in the administration of non-conventional last-resort antibiotics, including quinolones, aminoglycosides, and polypeptides, and the effects of these drugs on immunomodulatory gene expression in activated human polymorphonuclear leukocytes (PMNs) have not been reported. In this study, lipopolysaccharide-stimulated PMNs were incubated with piperacillin, rifampicin, fosfomycin (FOM), levofloxacin (LVFX), minocycline (MINO), colistin, tigecycline, or amikacin, and the mRNA expression levels of pattern recognition receptors (TLR2, TLR4, and CD14), inflammatory cytokines (TNFα and IL6), and chemokine receptors (IL8Rs and ITGAM) in these cells were quantitated using real-time qPCR. Many of the tested antibiotics altered the expression of the investigated cytokines. Notably, FOM, LVFX, and MINO significantly downregulated the expression of IL6, which is associated with pro- and anti-inflammatory defense mechanisms. Treatment of FOM and LVFX reduced IL-6 production as well as observed for IL6 gene expression. These findings indicated transcription and translation cooperation under the used experimental conditions. Therefore, our findings suggest that administration of these antibiotics suppresses the host anti-inflammatory response.


Assuntos
Antibacterianos/farmacologia , Expressão Gênica/genética , Imunomodulação/genética , Lipopolissacarídeos/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Expressão Gênica/imunologia , Humanos , Imunomodulação/imunologia , Inflamação/genética , Inflamação/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia
7.
Front Microbiol ; 11: 573, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373082

RESUMO

Acinetobacter baumannii causes nosocomial infections due to its multidrug resistance and high environmental adaptability. Colistin is a polypeptide antibacterial agent that targets lipopolysaccharide (LPS) and is currently used to control serious multidrug-resistant Gram-negative bacterial infections, including those caused by A. baumannii. However, A. baumannii may acquire colistin resistance by losing their LPS. In mouse models, LPS-deficient A. baumannii have attenuated virulence. Nevertheless, the mechanism through which the pathogen is cleared by host immune cells is unknown. Here, we established colistin-resistant A. baumannii strains and analyzed possible mechanisms through which they are cleared by neutrophils. Colistin-resistant, LPS-deficient strains harbor mutations or insertion sequence (IS) in lpx genes, and introduction of intact lpx genes restored LPS deficiency. Analysis of interactions between these strains and neutrophils revealed that compared with wild type, LPS-deficient A. baumannii only weakly stimulated neutrophils, with consequent reduced levels of reactive oxygen species (ROS) and inflammatory cytokine production. Nonetheless, neutrophils preferentially killed LPS-deficient A. baumannii compared to wild-type strains. Moreover, LPS-deficient A. baumannii strains presented with increased sensitivities to antibacterial lysozyme and lactoferrin. We revealed that neutrophil-secreted lysozyme was the antimicrobial factor during clearance of LPS-deficient A. baumannii strains. These findings may inform the development of targeted therapeutics aimed to treat multidrug-resistant infections in immunocompromised patients who are unable to mount an appropriate cell-mediated immune response.

8.
Biol Pharm Bull ; 43(2): 250-253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009113

RESUMO

Bacillus cereus is well known as a causative agent of food poisoning but it also causes bacteremia and endophthalmitis in nosocomial infections. However, as an environmental bacterium that lives in soil, it is often treated as simple contamination by hospitals. In recent years, highly pathogenic B. cereus strains that are similar to Bacillus anthracis have been detected in hospitals. The B. cereus sphingomyelinase contributes to its pathogenicity, as do sphingomyelinases produced by Staphylococcus aureus, Pseudomonas aeruginosa, Helicobacter pylori, and B. anthracis. Highly pathogenic B. cereus produces a large amount of sphingomyelinase. In this review, we describe the regulation of sphingomyelinase expression through the PlcR-PapR system, the pathogenicity of bacterial sphingomyelinases, and their potential as therapeutic drug targets.


Assuntos
Bacillus cereus/metabolismo , Bacillus cereus/patogenicidade , Esfingomielina Fosfodiesterase/metabolismo , Humanos
9.
Mar Drugs ; 18(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019233

RESUMO

Side-chain derivatives of eurotiumide A, a dihydroisochroman-type natural product, have been synthesized and their antimicrobial activities described. Sixteen derivatives were synthesized from a key intermediate of the total synthesis of eurotiumide A, and their antimicrobial activities against two Gram-positive bacteria, methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MSSA and MRSA), and a Gram-negative bacterium, Porphyromonas gingivalis, were evaluated. The results showed that derivatives having an iodine atom on their aromatic ring instead of the prenyl moiety displayed better antimicrobial activity than eurotiumide A against MSSA and P. gingivalis. Moreover, we discovered that a derivative with an isopentyl side chain, which is a hydrogenated product of eurotiumide A, is the strongest antimicrobial agent against all three strains, including MRSA.


Assuntos
Antibacterianos/farmacologia , Cromanos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Cromanos/síntese química , Cromanos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Relação Estrutura-Atividade
10.
Front Immunol ; 9: 178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467765

RESUMO

Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs), has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA), and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections.


Assuntos
Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/imunologia , Adesão Celular/imunologia , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Acinetobacter baumannii/patogenicidade , Biomarcadores , Antígeno CD11a , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Citotoxicidade Imunológica , Armadilhas Extracelulares/metabolismo , Humanos , Imunomodulação , Neutrófilos/metabolismo
11.
Immunobiology ; 222(11): 1025-1034, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28595750

RESUMO

Mast cells serve important roles as sentinels against bacterial infection by secreting mediators stored in granules. Much of their effectiveness depends upon recruiting and/or modulating other immune cells. The location of mast cells implies that they recognize pathogens invading tissues or mucosal tissues. Acinetobacter baumannii is a gram-negative bacterium that is considered an emerging nosocomial pathogen and causes a wide range of infections associated with high morbidity and mortality. To date, the interaction of A. baumannii with mast cells remains unclear. In this study, we demonstrated an interaction between human LAD2 mast cells and A. baumannii in vitro. When LAD2 cells were co-cultured with live A. baumannii or Pseudomonas aeruginosa PAO1 in vitro for 4h, TNF-α and IL-8 were produced in the culture supernatant. These inflammatory cytokines were not detected in the supernatant after the cells were treated with live bacteria without serum. Gene expression analysis showed that TNF-α and IL-8 mRNA expression increased in A. baumannii- and P. aeruginosa-infected LAD2 cells. Scanning electron microscopy showed that A. baumannii was tightly attached to the surface of LAD2 cells and suggested that A. baumannii may bind to FcγRII (CD32) on LAD2 cells. TNF-α in the culture supernatant from A. baumannii-infected LAD2 cells, showed that PMN activation and migration increased in Boyden chamber assays. These results suggest that mast cells recognize and initiate immune responses toward A. baumannii by releasing the preformed mediator TNF-α to activate effector neutrophils.


Assuntos
Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Inflamação/imunologia , Mastócitos/imunologia , Neutrófilos/imunologia , Receptores de IgG/metabolismo , Aderência Bacteriana , Linhagem Celular , Humanos , Imunidade , Interleucina-8/metabolismo , Mastócitos/microbiologia , Fator de Necrose Tumoral alfa/metabolismo
12.
FEBS Open Bio ; 7(6): 877-886, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28593142

RESUMO

Neutrophils play a critical role in the innate immune response. Recently, a new neutrophilic biological defense mechanism, termed neutrophil extracellular traps (NETs), has been attracting attention. Neutrophils have been observed to release both lysosomal enzymes and their nuclear contents, including unfolded chromatin, which together trap and inactivate bacteria. The environment in tissues where neutrophils act is thought to be different from that of the blood serum. In this study, we assessed the effect of serum on NET formation. We found that neutrophils spontaneously form NETs in serum-free cultivation conditions at early times. These NETs functioned properly to trap bacteria. Furthermore, we demonstrated that reactive oxygen species play a critical role in the spontaneous formation of NETs. These results suggest that the serum condition must be considered in studies on neutrophils, including the formation and mechanism of action of NETs.

13.
J Leukoc Biol ; 100(6): 1405-1412, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27365529

RESUMO

Hospital-acquired infections as a result of Acinetobacter baumannii have become problematic because of high rates of drug resistance. Although neutrophils play a critical role in early protection against bacterial infection, their interactions with A. baumannii remain largely unknown. To elucidate the interactions between A. baumannii and human neutrophils, we cocultured these cells and analyzed them by microscopy and flow cytometry. We found that A. baumannii adhered to neutrophils. We next examined neutrophil and A. baumannii infiltration into Matrigel basement membranes by an in vitro transmigration assay. Neutrophils were activated by A. baumannii, and invasion was enhanced. More interestingly, A. baumannii was transported together by infiltrating neutrophils. Furthermore, we observed by live cell imaging that A. baumannii and neutrophils moved together. In addition, A. baumannii-activated neutrophils showed increased IL-8 production. The transport of A. baumannii was suppressed by inhibiting neutrophil infiltration by blocking the effect of IL-8. A. baumannii appears to use neutrophils for transport by activating these cells via IL-8. In this study, we revealed a novel bacterial transport mechanism that A. baumannii exploits human neutrophils by adhering to and inducing IL-8 release for bacterial portage. This mechanism might be a new treatment target.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/fisiologia , Interleucina-8/fisiologia , Neutrófilos/microbiologia , Acinetobacter/fisiologia , Infecções por Acinetobacter/sangue , Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/patogenicidade , Animais , Aderência Bacteriana , Translocação Bacteriana , Células Cultivadas , Colágeno Tipo I , Escherichia coli/fisiologia , Feminino , Géis , Humanos , Interleucina-8/biossíntese , Interleucina-8/sangue , Membranas Artificiais , Camundongos , Camundongos Endogâmicos C3H , Fagocitose , Pseudomonas aeruginosa/fisiologia , Explosão Respiratória , Especificidade da Espécie , Imagem com Lapso de Tempo , Virulência
14.
J Microbiol Methods ; 121: 36-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26707336

RESUMO

Carbapenem-resistant Acinetobacter baumannii, which are mainly induced by the production of OXA-type ß-lactamases, are among the leading causes of nosocomial infections worldwide. Among the ß-lactamase genes, the presence of the OXA-51-like gene carrying the upstream insertion sequence, ISAba1, was found to be one of the most prevalent carbapenem resistance mechanisms utilized by these bacteria. Consequently, it is necessary to develop a rapid detection method for ISAba1-blaOXA-51-like sequence for the timely and appropriate antibiotic treatment of A. baumannii infection. In this study, a loop-mediated isothermal amplification (LAMP) assay was optimized for ISAba1-blaOXA-51-like detection. The LAMP primer set was designed to recognize distinct sequences in the ISAba1-blaOXA-51-like gene and could amplify the gene within 25 min at an isothermal temperature of 60°C. This LAMP assay was able to detect the ISAba1-blaOXA-51-like gene with high specificity; in addition, no cross-reactivity was observed for other types of ß-lactamase producers (OXA-23-like, OXA-40-like, OXA-58-like, and IMP-1), as indicated by the absence of false positive or false negative results. The detection limit for this assay was found to be 10(0)CFU per tube which was 100-fold more sensitive than a polymerase chain reaction assay for ISAba1-blaOXA-51-like detection. Furthermore, the LAMP assay provided swift detection of the ISAba1-blaOXA-51-like gene, even directly from clinical specimens. In summary, we have described a new, rapid assay for the detection of the ISAba1-blaOXA-51-like gene from A. baumannii that could be useful in a clinical setting. This method might facilitate epidemiological studies and allow monitoring of the emergence of drug resistant strains.


Assuntos
Acinetobacter baumannii/genética , Técnicas de Tipagem Bacteriana/métodos , Resistência Microbiana a Medicamentos/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Infecções por Acinetobacter/diagnóstico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , Carbapenêmicos/farmacologia , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/microbiologia , Elementos de DNA Transponíveis , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA , Resistência beta-Lactâmica/genética , beta-Lactamases/biossíntese , beta-Lactamases/genética , beta-Lactamases/metabolismo
15.
Innate Immun ; 21(8): 802-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26376669

RESUMO

Innate immunity coordinates LPS detection via TLR4 on polymorphonuclear leukocytes (PMNs) to elicit responses to many Gram-negative bacteria. In this study, we describe the effects of five subtypes of LPS [isolated from Escherichia coli B4, Pseudomonas aeruginosa PAO1, multidrug-resistant P. aeruginosa (MDRP), Acinetobacter baumannii and multidrug-resistant A. baumannii (MDRA)] on gene expression in PMNs. LPS isolated from B4, PAO1, and A. baumannii did not significantly alter TLR2 expression. However, LPS from MDRP and MDRA caused a 0.6-fold decrease and 2.7-fold increase, respectively, in TLR2 expression. Similarly, TLR4 expression was not significantly altered by LPS isolated from B4, PAO1 and A. baumannii but was down-regulated by LPS isolated from MDRP and MDRA by 0.1- and 0.6-fold, respectively. All LPS subtypes, excluding PAO1, down-regulated CD14 expression in PMNs. However, all five LPS subtypes up-regulated TNFA, IL1B, IL6, IL10 and TREM1 expression in a concentration-dependent manner, with the most substantial responses observed following exposure to LPS from MDRP and MDRA. These different effects on the gene expression in PMNs may depend on variation in LPS structural modifications related to acquired drug resistance, such as acylation and/or glycosylation.


Assuntos
Acinetobacter baumannii/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Neutrófilos/fisiologia , Pseudomonas aeruginosa/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Imunidade Inata/genética , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Neutrófilos/microbiologia , Infecções Oportunistas/imunologia , Infecções Oportunistas/microbiologia , Receptor 4 Toll-Like/fisiologia
16.
J Infect Chemother ; 21(1): 43-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25287154

RESUMO

Acinetobacter baumannii and Pseudomonas aeruginosa are the same aerobic gram-negative bacillus and are usually harmless but cause infectious diseases in compromised hosts. Neutrophils play a critical role in infective protection against the extracellular growth of bacteria. Recently, a new biological defense mechanism called neutrophil extracellular traps (NETs) has been attracting attention. In present study, we investigated the responsiveness of neutrophils to A. baumannii and P. aeruginosa, focusing on NET formation. Neutrophils were co-cultured with A. baumannii or P. aeruginosa, and then DNA, histone and neutrophil elastase were stained, and the formation of NETs was evaluated. Neutrophils stimulated with A. baumannii had spread, but their shapes was maintained, and the nucleus was observed as clearly as that in non-stimulated neutrophils. However, neutrophils stimulated with P. aeruginosa did not maintain their cellular morphology, and the nucleus was disrupted with DNA, histones, and neutrophil elastase released into the extracellular space. These results suggest that A. baumannii does not induce NET formation, in contrast to P. aeruginosa. In addition, we measured expression of myeloperoxidase (MPO), reactive oxygen species (ROS) and superoxide in neutrophils, and we found that these expression in P. aeruginosa-stimulated neutrophils was stronger than that in A. baumannii-stimulated neutrophils. Furthermore, A. baumannii was not killed by neutrophils, in contrast to P. aeruginosa. In this study, we show that the reactivity of neutrophils and their biological defense mechanism are different between A. baumannii and P. aeruginosa, which is important for understanding the pathogenicity of these bacteria.


Assuntos
Acinetobacter baumannii/patogenicidade , Armadilhas Extracelulares/microbiologia , Neutrófilos/microbiologia , Células Cultivadas , Técnicas de Cocultura , Armadilhas Extracelulares/fisiologia , Humanos , Peroxidase , Pseudomonas aeruginosa/patogenicidade , Espécies Reativas de Oxigênio
17.
J Infect Chemother ; 21(3): 202-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25529001

RESUMO

Klebsiella pneumoniae carbapenemases (KPC), which are associated with resistance to carbapenem, have recently spread worldwide and have become a global concern. It is necessary to detect KPC-producing organisms in clinical settings to be able to control the spread of this resistance. We have developed a loop-mediated isothermal amplification (LAMP) method for rapid detection of KPC producers. LAMP primer sets were designed to recognize the homologous regions of blaKPC-2 to blaKPC-17 and could amplify blaKPC rapidly. The specificity and sensitivity of the primers in the LAMP reactions for blaKPC detection were determined. This LAMP assay was able to specifically detect KPC producers at 68 °C, and no cross-reactivity was observed for other types of ß-lactamase (class A, B, C, or D) producers. The detection limit for this assay was found to be 10(0) CFU per tube, in 25 min, which was 10-fold more sensitive than a PCR assay for blaKPC detection. Then, the sensitivity of the LAMP reactions for blaKPC detection in human specimens (sputum samples, urine samples, fecal samples and blood samples) was analyzed; it was observed that the LAMP assay had almost the same sensitivity in these samples as when using purified DNA. The LAMP assay is easy to perform and rapid. It may therefore be routinely applied for detection of KPC producers in the clinical laboratory.


Assuntos
Proteínas de Bactérias/genética , Infecções por Klebsiella/diagnóstico , Klebsiella pneumoniae/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , beta-Lactamases/genética , Sequência de Bases , Sangue/microbiologia , Primers do DNA/química , Fezes/microbiologia , Humanos , Klebsiella pneumoniae/isolamento & purificação , Dados de Sequência Molecular , Plasmídeos/genética , Escarro/microbiologia , Urina/microbiologia
18.
Clin Exp Metastasis ; 31(3): 285-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24292405

RESUMO

Macrophages infiltrating tumor tissues (tumor-associated macrophages, TAM) affect the malignant behaviors of tumor cells. We previously reported that monocytes were differentiated into TAM-like cells secreting matrix metalloproteinase (MMP)-9 by co-culture with tumor cells, and that cell adhesion to extracellular matrix (ECM) proteins played a critical role in the differentiation. In this study, we found that the monocyte differentiation was promoted by laminin-332 (laminin-5), a major epithelial ECM component. We also demonstrated that the proteolytic processing of the γ2 chain of laminin-332 was essential for its activity but that the N-terminal short arm of the γ2 chain inhibited MMP-9 secretion. These results indicate that the activity of laminin-332 for monocyte differentiation is dynamically regulated by the proteolytic processing of the γ2 chain.


Assuntos
Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/genética , Metaloproteinase 9 da Matriz/metabolismo , Monócitos/citologia , Adesão Celular , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/genética , Neoplasias/genética , Neoplasias/patologia , Calinina
19.
J Biol Chem ; 288(30): 21569-80, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23754290

RESUMO

The staphylococcal superantigen-like protein (SSL) family is composed of 14 exoproteins sharing structural similarity with superantigens but no superantigenic activity. Target proteins of four SSLs have been identified to be involved in host immune responses. However, the counterparts of other SSLs have been functionally uncharacterized. In this study, we have identified porcine plasma prothrombin as SSL10-binding protein by affinity purification using SSL10-conjugated Sepharose. The resin recovered the prodomain of prothrombin (fragment 1 + 2) as well as factor Xa in pull-down analysis. The equilibrium dissociation constant between SSL10 and prothrombin was 1.36 × 10(-7) M in surface plasmon resonance analysis. On the other hand, the resin failed to recover γ-carboxyglutamic acid (Gla) domain-less coagulation factors and prothrombin from warfarin-treated mice, suggesting that the Gla domain of the coagulation factors is essential for the interaction. SSL10 prolonged plasma clotting induced by the addition of Ca(2+) and factor Xa. SSL10 did not affect the protease activity of thrombin but inhibited the generation of thrombin activity in recalcified plasma. S. aureus produces coagulase that non-enzymatically activates prothrombin. SSL10 attenuated clotting induced by coagulase, but the inhibitory effect was weaker than that on physiological clotting, and SSL10 did not inhibit protease activity of staphylothrombin, the complex of prothrombin with coagulase. These results indicate that SSL10 inhibits blood coagulation by interfering with activation of coagulation cascade via binding to the Gla domain of coagulation factor but not by directly inhibiting thrombin activity. This is the first finding that the bacterial protein inhibits blood coagulation via targeting the Gla domain of coagulation factors.


Assuntos
Ácido 1-Carboxiglutâmico/imunologia , Proteínas de Bactérias/imunologia , Fator Xa/imunologia , Protrombina/imunologia , Staphylococcus aureus/imunologia , Superantígenos/imunologia , Ácido 1-Carboxiglutâmico/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Sítios de Ligação/imunologia , Ligação Competitiva/imunologia , Coagulação Sanguínea/imunologia , Cálcio/imunologia , Cálcio/metabolismo , Coagulase/imunologia , Coagulase/metabolismo , Eletroforese em Gel de Poliacrilamida , Fator Xa/metabolismo , Humanos , Soros Imunes/imunologia , Soros Imunes/metabolismo , Camundongos , Dados de Sequência Molecular , Ligação Proteica/imunologia , Protrombina/metabolismo , Staphylococcus aureus/metabolismo , Superantígenos/metabolismo , Ressonância de Plasmônio de Superfície , Suínos , Trombina/imunologia , Trombina/metabolismo
20.
Biochem Biophys Res Commun ; 433(1): 127-32, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23485472

RESUMO

Staphylococcal superantigen-like protein (SSL), a family of exotoxins composed of 14 SSLs, exhibits no superantigenic activity despite of its structural similarity with superantigens. Several SSLs have been revealed to bind to host immune molecules such as IgA, IgG, complement and cell surface molecules expressed on immune cells, but the physiological function of SSL family has not been fully identified. In this study we attempted to isolate host target proteins of SSLs from human breast milk using SSLs-conjugated Sepharose. SSL8-conjugated Sepharose specifically recovered tenascin C (TNC), a multimodular and multifunctional extracellular matrix protein. Pull down analysis using SSL8-conjugated Sepharose and recombinant truncated fragments of TNC revealed that SSL8 interacts with fibronectin (FN) type III repeats 1-5 of TNC. The interaction of TNC with immobilized FN was attenuated, the scratch wound closure by HaCaT human keratinocytes was delayed and the inhibition of cell spreading on FN by TNC was recovered in the presence of SSL8. These findings suggest that SSL8 binds to TNC, thereby inhibits the TNC-FN interaction and motility of keratinocytes. The present study added a novel role of SSL family protein as an interrupting molecule against the function of extracellular matrix.


Assuntos
Exotoxinas/metabolismo , Fibronectinas/metabolismo , Queratinócitos/fisiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Superantígenos/metabolismo , Tenascina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Movimento Celular , Feminino , Fibronectinas/genética , Humanos , Queratinócitos/imunologia , Leite Humano/imunologia , Leite Humano/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/patogenicidade , Tenascina/genética , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...