Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Lett ; 2852021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33716365

RESUMO

There has been a growing interest in optical neural interfaces which is driven by the need for improvements in spatial precision, real-time monitoring, and reduced invasiveness. Here, we present unique microfabrication and packaging techniques to build implantable optoelectronics with high precision and spatial complexity. Material characterization of our hybrid polymers shows minimal in vitro degradation, greater flexibility, and lowest optical loss (4.04-4.4 dB/cm at 670 nm) among other polymers reported in prior studies. We use the developed methods to build Lawrence Livermore National Laboratory's (LLNL's) first ultra-compact, lightweight (0.38 g), scalable and minimally invasive thin-film optoelectronic neural implant that can be used for chronic studies of brain activities. The paper concludes by summarizing the progress to date and discussing future opportunities for flexible optoelectronic interfaces in next generation clinical applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30766759

RESUMO

Optogenetics allows for optical manipulation of neuronal activity and has been increasingly combined with intra- and extra-cellular electrophysiological recordings. Genetically-identified classes of neurons are optically manipulated, though the versatility of optogenetics would be increased if independent control of distinct neural populations could be achieved on a sufficient spatial and temporal resolution. We report a scalable multi-site optoelectrode design that allows simultaneous optogenetic control of two spatially intermingled neuronal populations in vivo. We describe the design, fabrication, and assembly of low-noise, multi-site/multi-color optoelectrodes. Each shank of the four-shank assembly is monolithically integrated with 8 recording sites and a dual-color waveguide mixer with a 7 × 30 µm cross-section, coupled to 405 nm and 635 nm injection laser diodes (ILDs) via gradient-index (GRIN) lenses to meet optical and thermal design requirements. To better understand noise on the recording channels generated during diode-based activation, we developed a lumped-circuit modeling approach for EMI coupling mechanisms and used it to limit artifacts to amplitudes under 100 µV upto an optical output power of 450 µW. We implanted the packaged devices into the CA1 pyramidal layer of awake mice, expressing Channelrhodopsin-2 in pyramidal cells and ChrimsonR in paravalbumin-expressing interneurons, and achieved optical excitation of each cell type using sub-mW illumination. We highlight the potential use of this technology for functional dissection of neural circuits.

3.
Sci Rep ; 6: 30961, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27485264

RESUMO

Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets.


Assuntos
Região CA1 Hipocampal/metabolismo , Cristalino/metabolismo , Optogenética , Células Piramidais/metabolismo , Animais , Região CA1 Hipocampal/patologia , Eletrodos , Cristalino/patologia , Camundongos , Camundongos Transgênicos , Células Piramidais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...