Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eng Life Sci ; 22(7): 474-483, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35865648

RESUMO

This study introduced an automated long-term fermentation process for fungals grown in pellet form. The goal was to reduce the overgrowth of bioreactor internals and sensors while better rheological properties in the fermentation broth, such as oxygen transfer and mixing time, can be achieved. Because this could not be accomplished with continuous culture and fed-batch fermentation, repeated-batch fermentation was implemented with the help of additional bioreactor internals ("sporulation supports"). This should capture some biomass during fermentation. After harvesting the suspended biomass, intermediate cleaning was performed using a cleaning device. The biomass retained on the sporulation support went through the sporulation phase. The spores were subsequently used as inocula for the next batch. The reason for this approach was that the retained pellets could otherwise cause problems (e.g., overgrowth on sensors) in subsequent batches because the fungus would then show undesirable hyphal growth. Various sporulation supports were tested for sufficient biomass fixation to start the next batch. A reproducible spore concentration within the range of the requirements could be achieved by adjusting the sporulation support (design and construction material), and an intermediate cleaning adapted to this.

2.
Bioprocess Biosyst Eng ; 45(5): 931-941, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35235034

RESUMO

Productive biofilms are gaining growing interest in research due to their potential of producing valuable compounds and bioactive substances such as antibiotics. This is supported by recent developments in biofilm photobioreactors that established the controlled phototrophic cultivation of algae and cyanobacteria. Cultivation of biofilms can be challenging due to the need of surfaces for biofilm adhesion. The total production of biomass, and thus production of e.g. bioactive substances, within the bioreactor volume highly depends on the available cultivation surface. To achieve an enlargement of surface area for biofilm photobioreactors, biocarriers can be implemented in the cultivation. Thereby, material properties and design of the biocarriers are important for initial biofilm formation and growth of cyanobacteria. In this study, special biocarriers were designed and additively manufactured to investigate different polymeric materials and surface designs regarding biofilm adhesion of the terrestrial cyanobacterium Nostoc flagelliforme (CCAP 1453/33). Properties of 3D-printed materials were characterized by determination of wettability, surface roughness, and density. To evaluate the influence of wettability on biofilm formation, material properties were specifically modified by gas-phase fluorination and biofilm formation was analyzed on biocarriers with basic and optimized geometry in shaking flask cultivation. We found that different polymeric materials revealed no significant differences in wettability and with identical surface design no significant effect on biomass adhesion was observed. However, materials treated with fluorination as well as optimized biocarrier design showed improved wettability and an increase in biomass adhesion per biocarrier surface.


Assuntos
Cianobactérias , Fotobiorreatores , Biofilmes , Biomassa , Fotobiorreatores/microbiologia , Propriedades de Superfície , Molhabilidade
3.
Eng Life Sci ; 21(10): 558-572, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34690629

RESUMO

Purification of mRNA with oligo(dT)-functionalized magnetic particles involves a series of magnetic separations for buffer exchange and washing. Magnetic particles interact and agglomerate with each other when a magnetic field is applied, which can result in a decreased total surface area and thus a decreased yield of mRNA. In addition, agglomeration may also be caused by mRNA loading on the magnetic particles. Therefore, it is of interest how the individual steps of magnetic separation and subsequent redispersion in the buffers used affect the particle size distribution. The lysis/binding buffer is the most important buffer for the separation of mRNA from the multicomponent suspension of cell lysate. Therefore, monodisperse magnetic particles loaded with mRNA were dispersed in the lysis/binding buffer and in the reference system deionized water, and the particle size distributions were measured. A concentration-dependent agglomeration tendency was observed in deionized water. In contrast, no significant agglomeration was detected in the lysis/binding buffer. With regard to magnetic particle recycling, the influence of different storage and drying processes on particle size distribution was investigated. Agglomeration occurred in all process alternatives. For de-agglomeration, ultrasonic treatment was examined. It represents a suitable method for reproducible restoration of the original particle size distribution.

4.
Eng Life Sci ; 21(10): 573-588, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34690630

RESUMO

Laboratory protocols using magnetic beads have gained importance in the purification of mRNA for vaccines. Here, the produced mRNA hybridizes specifically to oligo(dT)-functionalized magnetic beads after cell lysis. The mRNA-loaded magnetic beads can be selectively separated using a magnet. Subsequently, impurities are removed by washing steps and the mRNA is eluted. Magnetic separation is utilized in each step, using different buffers such as the lysis/binding buffer. To reduce the time required for purification of larger amounts of mRNA vaccine for clinical trials, high-gradient magnetic separation (HGMS) is suitable. Thereby, magnetic beads are selectively retained in a flow-through separation chamber. To meet the requirements of biopharmaceutical production, a disposable HGMS separation chamber with a certified material (United States Pharmacopeia Class VI) was developed which can be manufactured using 3D printing. Due to the special design, the filter matrix itself is not in contact with the product. The separation chamber was tested with suspensions of oligo(dT)-functionalized Dynabeads MyOne loaded with synthetic mRNA. At a concentration of cB = 1.6-2.1 g·L-1 in lysis/binding buffer, these 1 µm magnetic particles are retained to more than 99.39% at volumetric flows of up to 150 mL·min-1 with the developed SU-HGMS separation chamber. When using the separation chamber with volumetric flow rates below 50 mL·min-1, the retained particle mass is even more than 99.99%.

5.
Eng Life Sci ; 21(5): 324-339, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976605

RESUMO

The implementation of single-use technologies offers several major advantages, e.g. prevention of cross-contamination, especially when spore-forming microorganisms are present. This study investigated the application of a single-use bioreactor in batch fermentation of filamentous fungus Penicillium sp. (IBWF 040-09) from the Institute of Biotechnology and Drug Research (IBWF), which is capable of intracellular production of a protease inhibitor against parasitic proteases as a secondary metabolite. Several modifications to the SU bioreactor were suggested in this study to allow the fermentation in which the fungus forms pellets. Simultaneously, fermentations in conventional glass bioreactor were also conducted as reference. Although there are significant differences in the construction material and gassing system, the similarity of the two types of bioreactors in terms of fungal metabolic activity and the reproducibility of fermentations could be demonstrated using statistic methods. Under the selected cultivation conditions, growth rate, yield coefficient, substrate uptake rate, and formation of intracellular protease-inhibiting substance in the single-use bioreactor were similar to those in the glass bioreactor.

6.
Eng Life Sci ; 17(7): 817-828, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32624828

RESUMO

The integration of disposable magnetic filters in combination with functionalized magnetic particles represents a fast and cost-effective alternative for enzyme purification in comparison to solid/liquid separation by means of centrifugation followed by chromatographic purification. The main advantage of the particle-based process is the solid/solid/liquid separation in one step combined with disposable equipment. Furthermore this combination provides the possibility to also process biocatalytic reactions in cell-containing media into disposable equipment with preimmobilized enzymes onto the magnetic particles. The focus of the presented study is on the design and performance of a disposable filtration unit consisting of a plastic bag with an inlet and outlet and a stainless steel filter matrix. During magnetic separation, the magnetic particles selectively retard at the filter matrix due to the magnetic force, which counteracts the drag force. It was found that the length of a lengthwise aligned filter matrix should be longer than the magnetic pole surfaces in fluid flow direction. Hereby, a filtration capacity of 5.6 g magnetic particles was measured with a loss of below 0.5%. Introducing a two-phase flow optimizes the cleaning of the bag after a magnetic filtration. The procedure offered a high cleaning efficiency. Herewith, the cleaned filter unit could be discarded with minimum losses of product and magnet particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...