Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2313096121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261613

RESUMO

Ether solvents are suitable for formulating solid-electrolyte interphase (SEI)-less ion-solvent cointercalation electrolytes in graphite for Na-ion and K-ion batteries. However, ether-based electrolytes have been historically perceived to cause exfoliation of graphite and cell failure in Li-ion batteries. In this study, we develop strategies to achieve reversible Li-solvent cointercalation in graphite through combining appropriate Li salts and ether solvents. Specifically, we design 1M LiBF4 1,2-dimethoxyethane (G1), which enables natural graphite to deliver ~91% initial Coulombic efficiency and >88% capacity retention after 400 cycles. We captured the spatial distribution of LiF at various length scales and quantified its heterogeneity. The electrolyte shows self-terminated reactivity on graphite edge planes and results in a grainy, fluorinated pseudo-SEI. The molecular origin of the pseudo-SEI is elucidated by ab initio molecular dynamics (AIMD) simulations. The operando synchrotron analyses further demonstrate the reversible and monotonous phase transformation of cointercalated graphite. Our findings demonstrate the feasibility of Li cointercalation chemistry in graphite for extreme-condition batteries. The work also paves the foundation for understanding and modulating the interphase generated by ether electrolytes in a broad range of electrodes and batteries.

2.
Angew Chem Int Ed Engl ; 62(30): e202301843, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37316957

RESUMO

In situ pyroelectric calorimetry and spectroscopic ellipsometry were used to investigate surface reactions in atomic layer deposition (ALD) of zirconium oxide (ZrO2 ). Calibrated and time-resolved in situ ALD calorimetry provides new insights into the thermodynamics and kinetics of saturating surface reactions for tetrakis(dimethylamino)zirconium(IV) (TDMAZr) and water. The net ALD reaction heat ranged from 0.197 mJ cm-2 at 76 °C to 0.155 mJ cm-2 at 158 °C, corresponding to an average of 4.0 eV/Zr at all temperatures. A temperature dependence for reaction kinetics was not resolved over the range investigated. The temperature dependence of net reaction heat and distribution among metalorganic and oxygen source exposure is attributed to factors including growth rate, equilibrium surface hydroxylation, and the extent of the reaction. ZrO2 -forming surface reactions were investigated computationally using DFT methods to better understand the influence of surface hydration on reaction thermodynamics.

3.
ACS Appl Mater Interfaces ; 15(5): 6933-6941, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36702613

RESUMO

Energy storage concepts based on multivalent ions, such as calcium, have great potential to become next-generation batteries due to their low cost and comparable cell voltage and energy density to Li-ion batteries. However, the development of Ca batteries is still hindered by the lack of suitable materials that grant a long cycle life. Specific to electrolyte materials, developing a calcium salt that is chemically stable under ambient conditions and enables reversible electrodeposition of Ca is critical. In this work, we use first-principles calculations to study the intrinsic and reductive stability of twelve Ca salts with fluorinated aluminate and borate anions and analyze the decomposition products formed on the metal anode surface that are critical to early-stage solid electrolyte interphase formation. We found anions with significant steric hindrance and a high degree of fluorination are intrinsically less stable and deemed unviable designs for Ca salt. Aluminate salts are generally less reactive with the Ca anode than their borate counterparts, and a high degree of fluorination leads to weaker reductive stability. Calcium fluoride is the most prominent decomposition product on the anode surface, and carbide-like motifs were also found from the decomposition of the designed salts.

4.
Angew Chem Int Ed Engl ; 61(51): e202208158, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36302076

RESUMO

Realization of practical sodium metal batteries (SMBs) is hindered due to lack of compatible electrolyte components, dendrite propagation, and poor understanding of anodic interphasial chemistries. Chemically robust liquid electrolytes that facilitate both favorable sodium metal deposition and a stable solid-electrolyte interphase (SEI) are ideal to enable sodium metal and anode-free cells. Herein we present advanced characterization of a novel fluorine-free electrolyte utilizing the [HCB11 H11 ]1- anion. Symmetrical Na cells operated with this electrolyte exhibit a remarkably low overpotential of 0.032 V at a current density of 2.0 mA cm-2 and a high coulombic efficiency of 99.5 % in half-cell configurations. Surface characterization of electrodes post-operation reveals the absence of dendritic sodium nucleation and a surprisingly stable fluorine-free SEI. Furthermore, weak ion-pairing is identified as key towards the successful development of fluorine-free sodium electrolytes.

5.
J Am Chem Soc ; 144(33): 15203-15210, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35943821

RESUMO

Atomic layer deposition (ALD) is a surface synthesis technique that is characterized by self-limiting reactions between gas-phase precursors and a solid substrate. Although ALD processes have been demonstrated that span the periodic table, a greater understanding of the surface chemistry that affords ALD is necessary to enable greater precision, including area- and site-selective growth. We offer new insight into the thermodynamics and kinetics of the trimethylaluminum (TMA) and H2O ALD half-reactions with calibrated and time-resolved in situ pyroelectric calorimetry. The half-reactions produce 3.46 and 2.76 eV/Al heat, respectively, which is greater than the heat predicted by computational models based on crystalline Al2O3 substrates and closely aligned with the heat predicted by standard heats of formation. The pyroelectric thin-film calorimeter offers submillisecond temporal resolution that uniquely and clearly resolves precursor delivery and reaction kinetics. Both half-reactions are observed to exhibit multiple kinetic rates, with average TMA half-reaction rates at least 2 orders of magnitude faster than the H2O half-reaction kinetics. Comparing the experimental heat with published computational literature and additional first-principles modeling highlights the need to refine our models and mechanistic understanding of even the most ubiquitous ALD reactions.

6.
ACS Appl Mater Interfaces ; 14(18): 21585-21595, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35438979

RESUMO

The feasibility of a site-selective hydration strategy that enables site-selective atomic layer deposition (ALD) is investigated among four rutile TiO2 facets [(110), (100), (101) and (001)] and their most prevalent step edges. First-principles simulations of asymmetric slab models were utilized to create accurate representations of pristine terrace and step edge sites. The adsorption free energies for molecular and dissociative adsorption of H2O were calculated to evaluate this strategy as a viable route to step edge selectivity. We predict that selective hydroxylation is possible on the 110 and 001 step edges and further computationally evaluate three metalorganic ALD precursors for their compatibility with the selective hydration strategy. Experimental evidence for delayed nucleation of ALD on rutile (001), (110), and (100) TiO2 single crystals corroborates predictions of the dehydration of the surface and suggests the possibility of site-selective ALD.

7.
J Chem Phys ; 155(12): 124701, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598576

RESUMO

The solid-electrolyte interphase (SEI) layer is a critical constituent of battery technology, which incorporates the use of lithium metals. Since the formation of the SEI is difficult to avoid, the engineering and harnessing of the SEI are absolutely critical to advancing energy storage. One problem is that much fundamental information about SEI properties is lacking due to the difficulty in probing a chemically complex interfacial system. One such property that is currently unknown is the dissolution of the SEI. This process can have significant effects on the stability of the SEI, which is critical to battery performance but is difficult to probe experimentally. Here, we report the use of ab initio computational chemistry simulations to probe the solution state properties of SEI components LiF, Li2O, LiOH, and Li2CO3 in order to study their dissolution and other solution-based characteristics. Ab initio molecular dynamics was used to study the solvation structures of the SEI with a combination of radial distribution functions, discrete solvation structure maps, and vibrational density of states, which allows for the determination of free energies. From the change in free energy of dissolution, we determined that LiOH is the most likely component to dissolve in the electrolyte followed by LiF, Li2CO3, and Li2O although none were favored thermodynamically. This indicates that dissolution is not probable, but Li2O would make the most stable SEI with regard to dissolution in the electrolyte.

8.
Chemphyschem ; 21(12): 1310-1317, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32364643

RESUMO

The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. Here we report the investigation of the passivation behavior of Li2 O, Li2 CO3, LiF and LiOH with the lithium salt LiFSI. We used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2 CO3 are the most passivating of the SEI layers, followed by LiOH and Li2 O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.

9.
Phys Chem Chem Phys ; 22(2): 575-588, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845699

RESUMO

The use of lithium metal as an electrode for electrochemical energy storage will provide a significant impact on practical energy storage technology. Unfortunately, the use of lithium metal is plagued with challenging chemical problems. Specifically, the formation of a solid electrolyte interphase layer and the nucleation and growth of lithium dendrites: both must be addressed and controlled in order to achieve a practically useable pure lithium metal electrode. Currently sophisticated experimental techniques and computationally expensive simulations are being used to probe these problems but these methods are arduous and time consuming which delays timely evaluation and insight into the rapidly changing field of advanced energy storage. Here, we report the use of DFT simulations of lithium nanoclusters to investigate and explore lithium metal chemistry with inexpensive computational methods to gain greater insight into electrochemical reductions and the nucleation and growth of dendrites. DME, LiTFSI, and LiFSI reduction energetics and structures with electrode effects from lithium metal are reported providing better physical description of the absolute reduction potential characterization. The electronic structure of the lithium nanoclusters were used to investigate the nucleation and growth of lithium dendrites from an ab initio perspective. The results demonstrate that kinetic processes have more control over non uniform growth than thermodynamic processes. Based on this information, a non ab initio model was created in Matlab that shows the initial stages of dendrite nucleation considering approximately 2000 atoms.

10.
ACS Appl Mater Interfaces ; 11(34): 31467-31476, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31368685

RESUMO

Lithium metal is an ideal anode for rechargeable lithium-battery technology. However, the extreme reactivity of Li metal with electrolytes leads to solid electrolyte interphase (SEI) layers that often impede Li+ transport across interfaces. The challenge is to predict the chemical, structural, and topographical heterogeneities of SEI layers arising from a multitude of interfacial constituents. Traditionally, the pathways and products of electrolyte decomposition processes were analyzed with the basic and simplifying presumption of an initial pristine Li-metal surface. However, ubiquitous inorganic passivation layers on Li metal can reduce electronic charge transfer to the electrolyte and significantly alter the SEI layer evolution. In this study, we analyzed the effect of nanometric Li2O, LiOH, and Li2CO3 as surface passivation layers on the interfacial reactivity of Li metal, using ab initio molecular dynamics (AIMD) calculations and X-ray photoelectron spectroscopy (XPS) measurements. These nanometric layers impede the electronic charge transfer to the electrolyte and thereby provide some degree of passivation (compared to pristine lithium metal) by altering the redox-based decomposition process. The Li2O, LiOH, and Li2CO3 layers admit varying levels of electron transfer from a Li-metal slab and subsequent storage of the electronic charges within their structures. As a result, their ability to transfer electrons to the electrolyte molecules, as well as the extent of decomposition of bis(trifluoromethanesulfonyl)imide anions, is significantly reduced compared to similar processes on pristine Li metal. The XPS experiments revealed that when Li2O is the major component on the altered surface, LiF phases formed to a greater extent. The presence of a dominant LiOH layer, however, results in enhanced sulfur decomposition processes. From AIMD studies, these observations can be explained based on the calculated quantities of electronic charge transfer found for each of the passivating films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...