Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Hypertens ; 44(7): 627-633, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35844144

RESUMO

BACKGROUND: This study investigated oxidative damage to bone marrow cells in the pathogenesis of renovascular hypertension (RH). METHODS: Male C57BL/6 J mice (10-week-old and ~23 g) were divided into two groups: Sham-operated and 2K1C, which has a stainless-steel clip placed around the left renal artery. After twenty-eight days, the animals were anesthetized for hemodynamic measurements and bone marrow cells isolation. The intracellular production of ROS, DNA damage, and DNA repair kinetics were evaluated. RESULTS: Our results show that RH increases HSCs ROS production and that the 2K1C group showed a significant reduction of HSCs in the G0/G1 phase, increased p53 expression, DNA fragmentation, low DNA repair capacity, and a higher percentage of apoptotic cells when compared with the Sham group. CONCLUSIONS: Our data imply that RH can compromise the hematopoiesis by increased oxidative stress leading to impaired DNA repair activity. Furthermore, this study provides new insights into the influence of hypertension on bone marrow homeostasis. This study showed for the first time that RH leads to oxidative damage, including genotoxic, to bone marrow cells. Thus, these findings provide new insights into the consequences of RH on bone marrow cells.


Assuntos
Hipertensão Renovascular , Animais , Dano ao DNA , Células-Tronco Hematopoéticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...