Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 549: 68-76, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32853848

RESUMO

Influenza B viruses cause seasonal epidemics and are a considerable burden to public health. To understand their adaptation capability, we examined the genetic changes that occurred following 15 serial passages of two influenza B viruses, B/Brisbane/60/2008 and B/Victoria/504/2000, in human epithelial cells. Thirteen distinct amino acid mutations were found in the PB1, PA, hemagglutinin (HA), neuraminidase (NA), and M proteins after serial passage in the human lung epithelial cell line, Calu-3, and normal human bronchial epithelial (NHBE) cells. These changes were associated with significantly decreased viral replication levels. Our results demonstrate that adaptation of influenza B viruses for growth in human airway epithelial cells is partially conferred by selection of HA1, NA, and polymerase mutations that regulate receptor specificity, functional compatibility with the HA protein, and polymerase activity, respectively.


Assuntos
Hemaglutininas Virais/genética , Vírus da Influenza B/genética , Mutação , Neuraminidase/genética , Proteínas da Matriz Viral/genética , Proteínas Virais/genética , Animais , Linhagem Celular , Cães , Células Epiteliais , Regulação Viral da Expressão Gênica , Células HEK293 , Testes de Inibição da Hemaglutinação , Hemaglutininas Virais/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus da Influenza B/crescimento & desenvolvimento , Vírus da Influenza B/metabolismo , Células Madin Darby de Rim Canino , Neuraminidase/metabolismo , Inoculações Seriadas/métodos , Transdução de Sinais , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
2.
Artigo em Inglês | MEDLINE | ID: mdl-32393488

RESUMO

Each year, 5% to 20% of the population of the United States becomes infected with influenza A virus. Combination therapy with two or more antiviral agents has been considered a potential treatment option for influenza virus infection. However, the clinical results derived from combination treatment with two or more antiviral drugs have been variable. We examined the effectiveness of cotreatment with two distinct classes of anti-influenza drugs, i.e., neuraminidase (NA) inhibitor, laninamivir, and interferon lambda 1 (IFN-λ1), against the emergence of drug-resistant virus variants in vitro We serially passaged pandemic A/California/04/09 [A(H1N1)pdm09] influenza virus in a human lung epithelial cell line (Calu-3) in the presence or absence of increasing concentrations of laninamivir or laninamivir plus IFN-λ1. Surprisingly, laninamivir used in combination with IFN-λ1 promoted the emergence of the E119G NA mutation five passages earlier than laninamivir alone (passage 2 versus passage 7, respectively). Acquisition of this mutation resulted in significantly reduced sensitivity to the NA inhibitors laninamivir (∼284-fold) and zanamivir (∼1,024-fold) and decreased NA enzyme catalytic activity (∼5-fold) compared to the parental virus. Moreover, the E119G NA mutation emerged together with concomitant hemagglutinin (HA) mutations (T197A and D222G), which were selected more rapidly by combination treatment with laninamivir plus IFN-λ1 (passages 2 and 3, respectively) than by laninamivir alone (passage 10). Our results show that treatment with laninamivir alone or in combination with IFN-λ1 can lead to the emergence of drug-resistant influenza virus variants. The addition of IFN-λ1 in combination with laninamivir may promote acquisition of drug resistance more rapidly than treatment with laninamivir alone.


Assuntos
Farmacorresistência Viral , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Interferons , Zanamivir , Antivirais/farmacologia , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Interferons/farmacologia , Neuraminidase/genética , Piranos , Ácidos Siálicos , Zanamivir/farmacologia
3.
Antiviral Res ; 169: 104539, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228489

RESUMO

Neuraminidase inhibitors (NAIs) play a key role in the management of influenza. Given the limited number of FDA-approved anti-influenza drugs, evaluation of potential drug-resistant variants is of high priority. Two NA mutations, V116A and I117V, are found in ∼0.6% of human, avian, and swine N1 isolates. Using the A/California/04/09-like (CA/04, H1N1) background, we examined the impact of V116A and I117V NA mutations on NAI susceptibility, substrate specificity, and replicative capacity in normal human bronchial (NHBE) cells and a human respiratory epithelial cell line (Calu-3). We compared the impact of V116A and I117V on the functional properties of NA and compared these mutations with that of previously reported NAI-resistant mutations, E119A, H275Y, and N295S. All NA mutations were genetically stable. None of the viruses carrying NA mutations grew to significantly lower titers than CA/04 in Calu-3 cells. In contrast, V116A, I117V, E119A, and N295S substitutions resulted in significantly lower viral titers (1.2 logs) than the parental CA/04 virus in NHBE cells. V116A conferred reduced sensitivity to oseltamivir and zanamivir (13.7-fold). When MUNANA, 3'SL, and 6'SL substrates were applied, we observed that V116A reduced binding ability for all substrates (13.9-fold) and I117V led to the significantly decreased affinity for MUNANA and 6'SL (4.2-fold). Neither mutation altered the catalytic efficiency (kcat/KM) in catalyzing 3'SL, but the efficiency in catalyzing MUNANA and 6'SL was significantly decreased: only ∼34.7% compared to the wild-type NA. The efficiencies of NAs with E119A, H275Y, and N295S mutations to catalyze all substrates were ∼19.4% of the CA/04 NA. Our study demonstrates the direct effect of drug-resistant mutations located inside or adjacent to the NA active site on NA substrate specificity.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Mutação , Neuraminidase/antagonistas & inibidores , Neuraminidase/genética , Animais , Linhagem Celular , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Humanos , Himecromona/análogos & derivados , Himecromona/farmacologia , Influenza Humana/virologia , Cinética , Oseltamivir/farmacologia , Análise de Sequência , Suínos , Zanamivir/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...