Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 197-203, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650132

RESUMO

Myocardial fibrosis is a common pathological manifestation that occurs in various cardiac diseases. The present investigation aims to reveal how DNMT1/lncRNA-ANRIL/NLRP3 influences fibrosis and cardiac fibroblast pyroptosis. Here, we used ISO to induce myocardial fibrosis in mice, and LPS and ATP to induce myocardial fibroblast pyroptosis. The results showed that DNMT1, Caspase-1, and NLRP3 expression were significantly increased in fibrotic murine myocardium and pyroptotic cardiac fibroblasts, whereas LncRNA-ANRIL expression was decreased. DNMT1 overexpression decreased the level of LncRNA-ANRIL while increasing the levels of NLRP3 and Caspase-1. Contrarily, silencing DNMT1 increased the LncRNA-ANRIL and decreased the levels of NLRP3 and Caspase-1. Silencing LncRNA-ANRIL increased the levels of NLRP3 and Caspase-1. The present findings suggest that DNMT1 can methylate LncRNA-ANRIL during the development of myocardial fibrosis and CFs cell scorching, resulting in low LncRNA-ANRIL expression, thereby influencing myocardial fibrosis and cardiac fibroblast pyroptosis.


Assuntos
Caspase 1 , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Fibroblastos , Fibrose , Miocárdio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , RNA Longo não Codificante , Transdução de Sinais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Piroptose/genética , Piroptose/efeitos dos fármacos , Animais , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Caspase 1/metabolismo , Caspase 1/genética , Fibroblastos/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Camundongos , Metilação de DNA/genética , Masculino , Camundongos Endogâmicos C57BL
2.
Comput Math Methods Med ; 2022: 4525873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720023

RESUMO

Atrial fibrillation (AF), a commonly seen cardiac disease without optimal curative treatment option, is usually treated by traditional Chinese medicine in China. The Zhi-Gan-Cao decoction (ZGCD) is an alternative medicine for clinical use and has definitive effects. It remains to be defined regarding the specific components and related mechanisms of ZGCD for the treatment of AF. We determined the primary constituents and major targets of the herbs in ZGCD using the TCMSP, HERB, and BATMAN-TCM databases. The UniProt databank database amended and combined the prospective names to supply objective data and records. Every target connected to AF was generated using the GeneCards databank, Drugbank database, TTD, Disgenet database, and OMIM. After identifying possible common targets between ZGCD and AF, the interface network illustration "ZGCD component-AF-target" was created using Cytoscape. We obtained 175 constituents and 839 targets for seven herbal drug categories in the ZGCD and identified 1008 targets of AF. After merging and removing repetitions, 136 collective targets between the ZGCD and AF were removed using the Cytoscape system. These renowned targets were generated from 38 suitable components from among the 157 components. GO enhancement examination and KEGG enrichment analysis by Metascape identified the close connection between the critical target genes and 20 signaling pathways. Then, we injected isoproterenol subcutaneously into the mouse and gave gavage with roasted licorice soup. Two weeks later, mouse were processed and sampled for testing. The results of HE and Masson staining showed that ZGCD effectively alleviated the degree of myocardial fibrosis. As indicated by qRT-PCR and Western blotting, ZGCD significantly reduced COL1A1, COL1A2, COL3A1, and TGF-ß1 in myocardial fibrotic tissue to reduce myocardial fibrosis and treat AF by interfering with the expression of COL1A1, COL1A2, COL3A1, and TGF-ß1 in myocardial tissue. ZGCD may treat AF by lowering the degree of myocardial fibrosis.


Assuntos
Fibrilação Atrial , Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Animais , Fibrilação Atrial/tratamento farmacológico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Fibrose , Humanos , Medicina Tradicional Chinesa , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Estudos Prospectivos , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...