Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(2): 476-81, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18184818

RESUMO

To realize the immense potential of large-scale genomic sequencing after the completion of the second human genome (Venter's), the costs for the complete sequencing of additional genomes must be dramatically reduced. Among the technologies being developed to reduce sequencing costs, microchip electrophoresis is the only new technology ready to produce the long reads most suitable for the de novo sequencing and assembly of large and complex genomes. Compared with the current paradigm of capillary electrophoresis, microchip systems promise to reduce sequencing costs dramatically by increasing throughput, reducing reagent consumption, and integrating the many steps of the sequencing pipeline onto a single platform. Although capillary-based systems require approximately 70 min to deliver approximately 650 bases of contiguous sequence, we report sequencing up to 600 bases in just 6.5 min by microchip electrophoresis with a unique polymer matrix/adsorbed polymer wall coating combination. This represents a two-thirds reduction in sequencing time over any previously published chip sequencing result, with comparable read length and sequence quality. We hypothesize that these ultrafast long reads on chips can be achieved because the combined polymer system engenders a recently discovered "hybrid" mechanism of DNA electromigration, in which DNA molecules alternate rapidly between repeating through the intact polymer network and disrupting network entanglements to drag polymers through the solution, similar to dsDNA dynamics we observe in single-molecule DNA imaging studies. Most importantly, these results reveal the surprisingly powerful ability of microchip electrophoresis to provide ultrafast Sanger sequencing, which will translate to increased system throughput and reduced costs.


Assuntos
Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , DNA/análise , DNA de Cadeia Simples/química , Desenho de Equipamento , Genoma Humano , Humanos , Microscopia de Vídeo/métodos , Polímeros/química , Reprodutibilidade dos Testes , Fatores de Tempo
2.
Electrophoresis ; 27(17): 3420-7, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16944457

RESUMO

Temperature gradient focusing (TGF) has previously been shown to be a practical technique for simultaneous concentration and separation of a variety of samples. In this paper, we demonstrate that TGF can be conducted at a wide range of pH values. Techniques for first-order prediction of the suitability of a given BGE for focusing are discussed. Buffer suitability for TGF is assessed experimentally by simultaneously concentrating and separating a pair of fluorescent analytes. One analyte is held at constant concentration for use as an internal standard while the concentration of the other dye is varied. Peak area is shown to vary linearly with the input dye concentration. A high degree of resolution (R(s) >3) of fluorescein and carboxyfluorescein, as well as for two LysoSensor-based dyes, is also observed. Foucusing and separation by TGF was successfully conducted quantitatively in BGE solutions of pH from 3.0 to 10.5.


Assuntos
Eletroforese Capilar/métodos , Focalização Isoelétrica/métodos , Soluções Tampão , Fluoresceína/química , Fluoresceínas/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Focalização Isoelétrica/instrumentação , Temperatura
3.
Electrophoresis ; 27(19): 3823-35, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16972304

RESUMO

With the complete sequencing of the human genome, there is a growing need for rapid, highly sensitive genetic mutation detection methods suitable for clinical implementation. DNA-based diagnostics such as single-strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are commonly used in research laboratories to screen for mutations, but the slab gel electrophoresis (SGE) format is ill-suited for routine clinical use. The translation of these assays from SGE to microfluidic chips offers significant speed, cost, and sensitivity advantages; however, numerous parameters must be optimized to provide highly sensitive mutation detection. Here we present a methodical study of system parameters including polymer matrix, wall coating, analysis temperature, and electric field strengths on the effectiveness of mutation detection by tandem SSCP/HA for DNA samples from exons 5-9 of the p53 gene. The effects of polymer matrix concentration and average molar mass were studied for linear polyacrylamide (LPA) solutions. We determined that a matrix of 8% w/v 600 kDa LPA provides the most reliable SSCP/HA mutation detection on chips. The inclusion of a small amount of the dynamic wall-coating polymer poly-N-hydroxyethylacrylamide in the matrix substantially improves the resolution of SSCP conformers and extends the coating lifetime. We investigated electrophoresis temperatures between 17 and 35 degrees C and found that the lowest temperature accessible on our chip electrophoresis system gives the best condition for high sensitivity of the tandem SSCP/HA method, especially for the SSCP conformers. Finally, the use of electrical fields between 350 and 450 V/cm provided rapid separations (<10 min) with well-resolved DNA peaks for both SSCP and HA.


Assuntos
Análise Mutacional de DNA/métodos , Eletroforese em Microchip/normas , Genes p53/genética , Análise Heteroduplex/métodos , Polimorfismo Conformacional de Fita Simples , Resinas Acrílicas/química , Análise Mutacional de DNA/normas , Éxons/genética , Humanos , Temperatura
4.
Electrophoresis ; 25(21-22): 3564-88, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15565709

RESUMO

Advances in microchannel electrophoretic separation systems for DNA analyses have had important impacts on biological and biomedical sciences, as exemplified by the successes of the Human Genome Project (HGP). As we enter a new era in genomic science, further technological innovations promise to provide other far-reaching benefits, many of which will require continual increases in sequencing and genotyping efficiency and throughput, as well as major decreases in the cost per analysis. Since the high-resolution size- and/or conformation-based electrophoretic separation of DNA is the most critical step in many genetic analyses, continual advances in the development of materials and methods for microchannel electrophoretic separations will be needed to meet the massive demand for high-quality, low-cost genomic data. In particular, the development (and commercialization) of miniaturized genotyping platforms is needed to support and enable the future breakthroughs of biomedical science. In this review, we briefly discuss the major sequencing and genotyping techniques in which high-throughput and high-resolution electrophoretic separations of DNA play a significant role. We review recent advances in the development of technology for capillary electrophoresis (CE), including capillary array electrophoresis (CAE) systems. Most of these CE/CAE innovations are equally applicable to implementation on microfabricated electrophoresis chips. Major effort is devoted to discussing various key elements needed for the development of integrated and practical microfluidic sequencing and genotyping platforms, including chip substrate selection, microchannel design and fabrication, microchannel surface modification, sample preparation, analyte detection, DNA sieving matrices, and device integration. Finally, we identify some of the remaining challenges, and some of the possible routes to further advances in high-throughput DNA sequencing and genotyping technologies.


Assuntos
Eletroforese em Microchip/métodos , Análise de Sequência de DNA/métodos , Animais , Análise Mutacional de DNA/instrumentação , Análise Mutacional de DNA/métodos , Eletroforese em Microchip/instrumentação , Desenho de Equipamento , Genótipo , Humanos , Polímeros
5.
Anal Chem ; 76(18): 5249-56, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15362880

RESUMO

We have developed sparsely cross-linked "nanogels", subcolloidal polymer structures composed of covalently linked, linear polyacrylamide chains, as novel replaceable DNA sequencing matrixes for capillary and microchip electrophoresis. Nanogels were synthesized via inverse emulsion (water-in-oil) copolymerization of acrylamide and a low percentage (approximately 10(-4) mol %) of N,N-methylene bisacrylamide (Bis). Nanogels and nanogel networks were characterized by multiangle laser light scattering and rheometry, respectively, and tested for DNA sequencing in both capillaries and chips with four-color LIF detection. Typical nanogels have an average radius of approximately 230 nm, with approximately 75% of chains incorporating a Bis cross-linker. The properties and performance of nanogel matrixes are compared here to those of a linear polyacrylamide (LPA) network, matched for both polymer weight-average molar mass (M(w)) and the extent of interchain entanglements (c/c). At sequencing concentrations, the two matrixes have similar flow characteristics, important for capillary and microchip loading. However, because of the physical network stability provided by the internally cross-linked structure of the nanogels, substantially longer average read lengths are obtained under standard conditions with the nanogel matrix at a 98.5% accuracy of base-calling (for CE: 680 bases, an 18.7% improvement over LPA, with the best reads as long as 726 bases, compared to 568 bases for the LPA matrix). We further investigated the use of the nanogel matrixes in a high-throughput microfabricated DNA sequencing device consists of 96 separation channels densely fabricated on a 6-in. glass wafer. Again, preliminary DNA sequencing results show that the nanogel matrixes are capable of delivering significantly longer average read length, compared to an LPA matrix of comparable properties. Moreover, nanogel matrixes require 30% less polymer per unit volume than LPA. The addition of a small amount of low molar mass LPA or ultrahigh molar mass LPA to the optimized nanogel sequencing matrix further improves read length as well as the reproducibility of read length (RSD < 1.6%). This is the first report of a replaceable DNA sequencing matrix that provides better performance than LPA, in a side-by-side comparison of polymer matrixes appropriately matched for molar mass and the extent of interchain entanglements. These results could have significant implications for the improvement of microchip-based DNA sequencing technology.


Assuntos
DNA/análise , DNA/genética , Microfluídica/instrumentação , Nanoestruturas/química , Polímeros/química , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , Resinas Acrílicas , Eletroforese Capilar , Eletroforese em Gel de Poliacrilamida , Microfluídica/métodos
6.
Electrophoresis ; 25(7-8): 1007-15, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15095441

RESUMO

In an earlier study we showed that a blend of thermoresponsive and nonthermoresponsive hydroxyalkylcelluloses could be used to create a thermally tunable polymer network for double-stranded (ds) DNA separation. Here, we show the generality of this approach using a family of polymers suited to a wider range of DNA separations: a blended mixture of N,N-dialkylacrylamide copolymers with different thermoresponsive behaviors. A mixture of 47% w/w N,N-diethylacrylamide (DEA)/53% w/w N,N-dimethylacrylamide (DMA) (DEA47; thermoresponsive, transition temperature = 55 degrees C in water) and 30% w/w DEA/70% w/w DMA (DEA30; nonthermoresponsive, transition temperature > 85 degrees C in water) copolymers in the ratio of 1:5 w/w DEA47:DEA30 was used to separate a dsDNA restriction digest (PhiX174-HaeIII). We investigated the effects of changing mesh size on dsDNA separation, as controlled by temperature. We observed good DNA separation performance with the copolymer blend at temperatures ranging from 25 degrees C to 48 degrees C. The separation selectivity was evaluated quantitatively for certain DNA fragment pairs as a function of temperature. The results were compared with those obtained with a control matrix consisting only of the nonthermoresponsive DEA30. Different DNA fragment pairs of various sizes show distinct temperature-dependent selectivities. Over the same temperature range, no significant temperature dependence of selectivity is observed for these DNA fragment pairs in the nonthermoresponsive control matrix. Overall, the results show similar trends in the temperature dependency of separation selectivity to what was previously observed in hydroxyalkylcellulose blends, for the same DNA fragment pairs. Finally, we showed that a ramped temperature scheme enables improved separation in the blended copolymer matrix for both small and large DNA fragments, simultaneously in a single capillary electrophoresis (CE) run.


Assuntos
Acrilamida/química , Eletroforese Capilar , Peso Molecular , Temperatura
7.
Electrophoresis ; 24(24): 4161-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14679563

RESUMO

We have developed a novel class of thermogelling polymer networks based on poly-N-alkoxyalkylacrylamides, and demonstrated their use as DNA sequencing matrices for high-throughput microchannel electrophoresis in capillary arrays. Polymers and copolymers of N-ethoxyethylacrylamide (NEEA) and N-methoxyethylacrylamide (NMEA) were synthesized by aqueous-phase free-radical polymerization and characterized by tandem gel permeation chromatography-multi-angle laser light scattering. These copolymer matrices exhibit "re-entrant"-type volume phase transitions, forming entangled networks with high shear viscosity at low (< 20 degrees C) and high (> 35 degrees C) temperatures, and undergoing a "coil-to-globular", lower critical solution temperature (LCST)-like phase transition over an intermediate temperature range (20-35 degrees C). Hence, matrix viscosity is relatively low at room temperature (25 degrees C), and increases rapidly above 35 degrees C. The material properties and phase behavior of these thermogelling polymer networks were studied by steady-shear rheometry. These matrices are easily loaded into capillary arrays at room temperature while existing as viscous fluids, but thermogel above 35 degrees C to form transparent hydrogels via a thermo-associative phase transition. The extent of the intermediate viscosity drop and the final viscosity increase depends on the composition of the copolymers. DNA sequencing by capillary array electrophoresis with four-color laser-induced fluorescence (LIF) detection shows that these thermogelling networks provide enhanced resolution of both small and large DNA sequencing fragments and longer sequencing read lengths, in comparison to appropriate control (closely related, nonthermogelling) polymer networks. In particular, a copolymer comprised of 90% w/w NMEA and 10% w/w NEEA, with a molecular mass of approximately 2 MDa, delivers around 600 bases at 98.5% base-calling accuracy in 100 min of electrophoresis.


Assuntos
Resinas Acrílicas/química , Polímeros/química , Análise de Sequência de DNA/métodos , Sequência de Bases , Eletroforese Capilar , Dados de Sequência Molecular , Viscosidade
8.
Electrophoresis ; 24(24): 4170-80, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14679564

RESUMO

We have developed sparsely cross-linked "nanogels", sub-colloidal polymer structures composed of covalently linked, linear polyacrylamide chains, as novel DNA sequencing matrices for capillary electrophoresis. The presence of covalent cross-links affords nanogel matrices with enhanced network stability relative to standard, linear polyacrylamide (LPA), improving the separation of large DNA fragments. Nanogels were synthesized via inverse emulsion (water-in-oil) copolymerization of acrylamide and N,N-methylenebisacrylamide (Bis). In order to retain the fluidity necessary in a replaceable polymer matrix for capillary array electrophoresis (CAE), a low percentage of the Bis cross-linker (< 10(-4) mol%) was used. Nanogels were characterized by multiangle laser light scattering and rheometry, and were tested for DNA sequencing by CAE with four-color laser-induced fluorescence (LIF) detection. The properties and performance of nanogel matrices were compared to those of a commercially available LPA network, which was matched for both weight-average molar mass (Mw) and extent of interchain entanglements (c/c*). Nanogels presented in this work have an average radius of gyration of 226 nm and a weight-average molar mass of 8.8 x 10(6) g/mol. At concentrations above the overlap threshold, nanogels form a clear, viscous solution, similar to the LPA matrix (Mw approximately 8.9 x 10(6) g/mol). The two matrices have similar flow and viscosity characteristics. However, because of the physical network stability provided by the internally cross-linked structure of the nanogels, a substantially longer read length ( approximately 63 bases, a 10.4% improvement) is obtained with the nanogel matrix at 98.5% accuracy of base-calling. The nanogel network provides higher-selectivity separation of ssDNA sequencing fragments longer than 375 bases. Moreover, nanogel matrices require 30% less polymer per unit volume than LPA. This is the first report of a sequencing matrix that provides better performance than LPA, in a side-by-side comparison of polymer matrices matched for Mw and extent of interchain entanglements.


Assuntos
Resinas Acrílicas/química , DNA/análise , Polímeros/química , Análise de Sequência de DNA/métodos , Sequência de Bases , Eletroforese Capilar , Eletroforese em Gel de Poliacrilamida , Viscosidade
9.
Electrophoresis ; 24(1-2): 55-62, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12652572

RESUMO

We present a "proof-of-concept" study showing that a blend of thermo-responsive and nonthermo-responsive polymers can be used to create a DNA sieving matrix with a thermally tunable mesh size, or "dynamic porosity". Various blends of two well-studied sieving polymers for CE, including hydroxypropylcellulose (HPC), a thermo-responsive polymer, and hydroxyethylcellulose (HEC), a nonthermo-responsive polymer, were used to separate a double-stranded DNA restriction digest (Phi X174-HaeIII). HPC exhibits a volume-phase transition in aqueous solution which results in a collapse in polymer coil volume at approximately 39 degrees C. Utilizing a blend of HPC and HEC in a ratio of 1:5 by weight, we investigated the effects of changing mesh size on DNA separation, as controlled by temperature. High-resolution DNA separations were obtained with the blended matrix at temperatures ranging from 25 degrees C to 38 degrees C. We evaluated changes in the selectivity of DNA separation with increasing temperature for certain pairs of small and large fragments. A pure HEC (nonthermo-responsive) matrix was used over the same temperature range as a negative control. In the blended matrix, we observe a maximum in selectivity at approximately 31 degrees C for small DNA, while a significant increase in the selectivity of large-DNA separation occurs at approximately 36 degrees C as the polymer mesh "opens". We also demonstrate, through a temperature ramping experiment, that this matrix can be utilized to obtain high-resolution separation of both small and large DNA fragments simultaneously in a single CE run. Blended polymer matrices with "dynamic porosity" have the potential to provide enhanced genomic analysis by capillary array or microchip electrophoresis in microfluidic devices with advanced temperature control.


Assuntos
Celulose/análogos & derivados , DNA/isolamento & purificação , Eletroforese Capilar/métodos , Bacteriófago phi X 174/química , Fenômenos Químicos , Físico-Química , DNA Viral/isolamento & purificação , Espectrofotometria , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...