Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4789, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918364

RESUMO

Two-dimensional freestanding membranes of materials, which can be transferred onto and make interfaces with any material, have attracted attention in the search for functional properties that can be utilized for next-generation nanoscale devices. We fabricated stable 1-nm-thick hafnia membranes exhibiting the metastable rhombohedral structure and out-of-plane ferroelectric polarizations as large as 13 µC/cm2. We also found that the rhombohedral phase transforms into another metastable orthorhombic phase without the ferroelectricity deteriorating as the thickness increases. Our results reveal the key role of the rhombohedral phase in the scale-free ferroelectricity in hafnia and also provide critical insights into the formation mechanism and phase stability of the metastable hafnia. Moreover, ultrathin hafnia membranes enable heterointerfaces and devices to be fabricated from structurally dissimilar materials beyond structural constrictions in conventional film-growth techniques.

3.
Adv Mater ; 35(40): e2304083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37410358

RESUMO

The superconducting diode effect (SDE), which causes a superconducting state in one direction and a normal-conducting state in another, has significant potential for developing ultralow power consumption circuits and non-volatile memory. However, the practical control of the SDE necessities the precise tuning of current, temperature, magnetic field, or magnetism. Therefore, the mechanisms of the SDE must be understood to develop novel materials and devices capable of realizing the SDE under more controlled and robust conditions. This study demonstrates an intrinsic zero-field SDE with an efficiency of up to 40% in Fe/Pt-inserted non-centrosymmetric Nb/V/Ta superconducting artificial superlattices. The polarity and magnitude of the zero-field SDE are controllable by the direction of magnetization, indicating that the effective exchange field acts on Cooper pairs. Furthermore, the first-principles calculation indicates that the SDE can be enhanced by an asymmetric configuration of proximity induced magnetic moments in superconducting layers, which induces a magnetic toroidal moment. This study has important implications regarding the development of novel materials and devices that can effectively control the SDE. Moreover, the magnetization control of the SDE is expected to aid in the designing of superconducting quantum devices and establishing a material platform for topological superconductors.

4.
J Am Chem Soc ; 145(13): 7528-7539, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947735

RESUMO

Hole-collecting monolayers have drawn attention in perovskite solar cell research due to their ease of processing, high performance, and good durability. Since molecules in the hole-collecting monolayer are typically composed of functionalized π-conjugated structures, hole extraction is expected to be more efficient when the π-cores are oriented face-on with respect to the adjacent surfaces. However, strategies for reliably controlling the molecular orientation in monolayers remain elusive. In this work, multiple phosphonic acid anchoring groups were used to control the molecular orientation of a series of triazatruxene derivatives chemisorbed on a transparent conducting oxide electrode surface. Using infrared reflection absorption spectroscopy and metastable atom electron spectroscopy, we found that multipodal derivatives align face-on to the electrode surface, while the monopodal counterpart adopts a more tilted configuration. The face-on orientation was found to facilitate hole extraction, leading to inverted perovskite solar cells with enhanced stability and high-power conversion efficiencies up to 23.0%.

5.
Adv Sci (Weinh) ; 10(12): e2206800, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36808490

RESUMO

Spin current, converted from charge current via spin Hall or Rashba effects, can transfer its angular momentum to local moments in a ferromagnetic layer. In this regard, the high charge-to-spin conversion efficiency is required for magnetization manipulation for developing future memory or logic devices including magnetic random-access memory. Here, the bulk Rashba-type charge-to-spin conversion is demonstrated in an artificial superlattice without centrosymmetry. The charge-to-spin conversion in [Pt/Co/W] superlattice with sub-nm scale thickness shows strong W thickness dependence. When the W thickness becomes 0.6 nm, the observed field-like torque efficiency is about 0.6, which is an order larger than other metallic heterostructures. First-principles calculation suggests that such large field-like torque arises from bulk-type Rashba effect due to the vertically broken inversion symmetry inherent from W layers. The result implies that the spin splitting in a band of such an ABC-type artificial SL can be an additional degree of freedom for the large charge-to-spin conversion.

6.
J Am Chem Soc ; 145(3): 1631-1637, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625846

RESUMO

Hydrogen spillover is a phenomenon in which hydrogen atoms generated on metal catalysts diffuse onto catalyst supports. This phenomenon offers reaction routes for functional materials. However, due to difficulties in visualizing hydrogen, the fundamental nature of the phenomenon, such as how far hydrogen diffuses, has not been well understood. Here, in this study, we fabricated catalytic model systems based on Pd-loaded SrFeOx (x ∼ 2.8) epitaxial films and investigated hydrogen spillover. We show that hydrogen spillover on the SrFeOx support extends over long distances (∼600 µm). Furthermore, the hydrogen-spillover-induced reduction of Fe4+ in the support yields large energies (as large as 200 kJ/mol), leading to the spontaneous hydrogen transfer and driving the surprisingly ultralong hydrogen diffusion. These results show that the valence changes in the supports' surfaces are the primary factor determining the hydrogen spillover distance. Our study leads to a deeper understanding of the long-debated issue of hydrogen spillover and provides insight into designing catalyst systems with enhanced properties.

7.
Nat Nanotechnol ; 17(8): 823-828, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35773423

RESUMO

The diode effect is fundamental to electronic devices and is widely used in rectifiers and a.c.-d.c. converters. At low temperatures, however, conventional semiconductor diodes possess a high resistivity, which yields energy loss and heating during operation. The superconducting diode effect (SDE)1-8, which relies on broken inversion symmetry in a superconductor, may mitigate this obstacle: in one direction, a zero-resistance supercurrent can flow through the diode, but for the opposite direction of current flow, the device enters the normal state with ohmic resistance. The application of a magnetic field can induce SDE in Nb/V/Ta superlattices with a polar structure1,2, in superconducting devices with asymmetric patterning of pinning centres9 or in superconductor/ferromagnet hybrid devices with induced vortices10,11. The need for an external magnetic field limits their practical application. Recently, a field-free SDE was observed in a NbSe2/Nb3Br8/NbSe2 junction; it originates from asymmetric Josephson tunnelling that is induced by the Nb3Br8 barrier and the associated NbSe2/Nb3Br8 interfaces12. Here, we present another implementation of zero-field SDE using noncentrosymmetric [Nb/V/Co/V/Ta]20 multilayers. The magnetic layers provide the necessary symmetry breaking, and we can tune the SDE by adjusting the structural parameters, such as the constituent elements, film thickness, stacking order and number of repetitions. We control the polarity of the SDE through the magnetization direction of the ferromagnetic layers. Artificially stacked structures13-18, such as the one used in this work, are of particular interest as they are compatible with microfabrication techniques and can be integrated with devices such as Josephson junctions19-22. Energy-loss-free SDEs as presented in this work may therefore enable novel non-volatile memories and logic circuits with ultralow power consumption.

8.
ACS Cent Sci ; 8(6): 775-794, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35756387

RESUMO

Dependence on lithium-ion batteries for automobile applications is rapidly increasing. The emerging use of anionic redox can boost the energy density of batteries, but the fundamental origin of anionic redox is still under debate. Moreover, to realize anionic redox, many reported electrode materials rely on manganese ions through π-type interactions with oxygen. Here, through a systematic experimental and theoretical study on a binary system of Li3NbO4-NiO, we demonstrate for the first time the unexpectedly large contribution of oxygen to charge compensation for electrochemical oxidation in Ni-based materials. In general, for Ni-based materials, e.g., LiNiO2, charge compensation is achieved mainly by Ni oxidation, with a lower contribution from oxygen. In contrast, for Li3NbO4-NiO, oxygen-based charge compensation is triggered by structural disordering and σ-type interactions with nickel ions, which are associated with a unique environment for oxygen, i.e., a linear Ni-O-Ni configuration in the disordered system. Reversible anionic redox with a small hysteretic behavior was achieved for LiNi2/3Nb1/3O2 with a cation-disordered Li/Ni arrangement. Further Li enrichment in the structure destabilizes anionic redox and leads to irreversible oxygen loss due to the disappearance of the linear Ni-O-Ni configuration and the formation of unstable Ni ions with high oxidation states. On the basis of these results, we discuss the possibility of using σ-type interactions for anionic redox to design advanced electrode materials for high-energy lithium-ion batteries.

9.
Sci Rep ; 11(1): 12682, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155226

RESUMO

Caloric effects of solids can provide us with innovative refrigeration systems more efficient and environment-friendly than the widely-used conventional vapor-compression cooling systems. Exploring novel caloric materials is challenging but critically important in developing future technologies. Here we discovered that the quadruple perovskite structure ferrimagnet BiCu3Cr4O12 shows large multiple caloric effects at the first-order charge transition occurring around 190 K. Large latent heat and the corresponding isothermal entropy change, 28.2 J K-1 kg-1, can be utilized by applying both magnetic fields (a magnetocaloric effect) and pressure (a barocaloric effect). Adiabatic temperature changes reach 3.9 K for the 50 kOe magnetic field and 4.8 K for the 4.9 kbar pressure, and thus highly efficient thermal controls are achieved in multiple ways.

10.
Int J Biol Macromol ; 183: 992-1001, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33964269

RESUMO

Sphaerotilus natans is a filamentous sheath-forming bacterium commonly found in activated sludge. Its sheath is assembled from a thiolic glycoconjugate called thiopeptidoglycan. S. montanus ATCC-BAA-2725 is a sheath-forming member of stream biofilms, and its sheath is morphologically similar to that of S. natans. However, it exhibits heat susceptibility, which distinguishes it from the S. natans sheath. In this study, chemical composition and solid-state NMR analyses suggest that the S. montanus sheath is free of cysteine, indicating that disulfide linkage is not mandatory for sheath formation. The S. montanus sheath was successfully solubilized by N-acetylation, allowing solution-state NMR analysis to determine the sugar sequence. The sheath was susceptible to thiopeptidoglycan lyase prepared from the thiopeptidoglycan-assimilating bacterium, Paenibacillus koleovorans. The reducing ends of the enzymatic digests were labeled with 4-aminobenzoic acid ethyl ester, followed by HPLC. Two derivatives were detected, and their structures were determined. We found that the sheath has no peptides and is assembled as follows: [→4)-ß-d-GlcA-(1→4)-ß-d-Glc-(1→3)-ß-d-GalNAc-(1→4)-α-d-GalNAc-(1→4)-α-d-GalN-(1→]n (ß-d-Glc and α-d-GalNAc are stoichiometrically and substoichiometrically 3-O-acetylated, respectively). Thiopeptidoglycan lyase was thus confirmed to cleave the 1,4 linkage between α-d-GalN and ß-d-GlcA, regardless of the peptide moiety. Furthermore, vital fluorescent staining of the sheath demonstrated that elongation takes place at the tips, as with the S. natans sheath.


Assuntos
Polissacarídeo-Liases/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Sphaerotilus/química , Paenibacillus/enzimologia
11.
Adv Mater ; 32(50): e2003501, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118213

RESUMO

Optically generated excitonic states (excitons and trions) in transition metal dichalcogenides are highly sensitive to the electronic and magnetic properties of the materials underneath. Modulation and control of the excitonic states in a novel van der Waals (vdW) heterostructure of monolayer MoSe2 on double-layered perovskite Mn oxide ((La0.8 Nd0.2 )1.2 Sr1.8 Mn2 O7 ) is demonstrated, wherein the Mn oxide transforms from a paramagnetic insulator to a ferromagnetic metal. A discontinuous change in the exciton photoluminescence intensity via dielectric screening is observed. Further, a relatively high trion intensity is discovered due to the charge transfer from metallic Mn oxide under the Curie temperature. Moreover, the vdW heterostructures with an ultrathin h-BN spacer layer demonstrate enhanced valley splitting and polarization of excitonic states due to the proximity effect of the ferromagnetic spins of Mn oxide. The controllable h-BN thickness in vdW heterostructures reveals a several-nanometer-long scale of charge transfer as well as a magnetic proximity effect. The vdW heterostructure allows modulation and control of the excitonic states via dielectric screening, charge carriers, and magnetic spins.

12.
RSC Adv ; 10(68): 41816-41820, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35516559

RESUMO

Lithium-oxide-halide and lithium-hydroxide-halide antiperovskites were explored for potential electrolytes in all-solid Li-ion batteries. A single-phase sample of the Ruddlesden-Popper (RP) series of compounds, LiBr(Li2OHBr)2 with double antiperovskite Li2OHBr layers and rigid rock-salt type LiBr layers, was obtained. Li+-ion vacancies are introduced in the double antiperovskite Li2OHBr layers but not in the LiBr layers and induce two-dimensional Li-ion conduction with low activation energy by mediating Li-ion hopping. In contrast to the Br-containing RP phase, Cl-containing Li-oxide-halide and Li-hydroxide-halide RP phases cannot be crystallized due to the structural mismatch between the antiperovskite layers and rigid LiCl layers.

13.
Arch Microbiol ; 200(8): 1257-1265, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29934786

RESUMO

Thiothrix nivea is a filamentous sulfur-oxidizing bacterium common in activated sludge and its filament is covered with a polysaccharide layer called sheath. In this study, we found that T. nivea aggregates under acidic conditions. A hexagonal lattice pattern, a typical morphological feature of proteinaceous S-layers, was newly observed on the surface of the sheath by transmission electron microscopy. The pattern and the acid-dependent aggregation were not observed in T. fructosivorans, a relative sheath-forming bacterium of T. nivea. The putative S-layer of T. nivea was detached by washing with unbuffered tris(hydroxymethyl)aminomethane base (Tris) solution and a protein of 160 kDa was detected by electrophoresis. Based on partial amino acid sequences of the protein, its structural gene was identified. The gene encodes an acidic protein which has a putative secretion signal and a Ca2+-binding domain. The protein was solubilized with urea followed by dialysis in the presence of calcium. A hexagonal lattice pattern was observed in the aggregates formed during dialysis, revealing that the protein is responsible for S-layer formation. Biosorption ability of copper, zinc, and cadmium onto the T. nivea filament decreased upon pretreatment with Tris, demonstrating that the S-layer was involved in metal adsorption. Moreover, aggregation of Escherichia coli was promoted by acidification in the presence of the S-layer protein, suggesting that the protein is potentially applicable as an acid-driven flocculant for other bacteria.


Assuntos
Thiothrix/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Thiothrix/química , Thiothrix/genética
14.
Int J Biol Macromol ; 109: 323-328, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253548

RESUMO

Thiothrix nivea is a filamentous sulfur-oxidizing bacterium commonly found in activated sludge. The filament of this bacterium is covered with a sheath. The sheath is an assemblage of macromolecular glucosaminoglucan (GG), [4)-ß-d-GlcN-(1 → 4)-ß-d-Glc-(1 → ]n, modified with an unidentified deoxy-sugar at position 3 of Glc. GG was obtained by dialysis after the partial hydrolysis of the sheath. The GG hydrogel was prepared by drying a GG solution. Then, the hydrogel was N-acetylated to prepare a stable hydrogel of N-acetylglucosaminoglucan (NGG), [4)-ß-d-GlcNAc-(1 → 4)-ß-d-Glc-(1 → ]n. The NGG hydrogel was stable in phosphate buffer but was disrupted by lysozyme addition, suggesting that NGG is susceptible to lysozyme degradation and has potential for medical use. The GG solution was N-acetylated to prepare a NGG suspension to confirm enzymatic degradation. The turbidity of the NGG suspension was decreased by lysozyme addition. Sugars released in the reaction mixture were derivatized with 4-aminobenzoic acid ethyl ester (ABEE) followed by HPLC analysis. Two major derivatives were detected, and their concentration was increased in reverse proportion to the turbidity of the reaction mixture. The derivatives were identified as GlcNAc-Glc-GlcNAc-Glc-ABEE and GlcNAc-Glc-ABEE by mass spectrometry. Consequently, NGG was found to be degraded by lysozyme via a mechanism similar to that of chitin degradation.


Assuntos
Acetilglucosamina/química , Biodegradação Ambiental , Glucanos/química , Glucanos/metabolismo , Thiothrix/química , Thiothrix/metabolismo , Cromatografia Líquida de Alta Pressão , Hidrogéis , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier
15.
ACS Appl Mater Interfaces ; 9(35): 30143-30148, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28791864

RESUMO

Modifications in oxygen coordination environments in heterostructures consisting of dissimilar oxides often emerge and lead to unusual properties of the constituent materials. Although lots of attention has been paid to slight modifications in the rigid oxygen octahedra of perovskite-based heterointerfaces, revealing the modification behaviors of the oxygen coordination environments in the heterostructures containing oxides with oxygen vacancies have been challenging. Here, we show that a significant modification in the oxygen coordination environments-melting of oxygen vacancy order-is induced at the heterointerface between SrFeO2.5 (SFO) and DyScO3 (DSO). When an oxygen-deficient perovskite (brownmillerite structure) SrFeO2.5 film grows epitaxially on a perovskite DyScO3 substrate, both FeO6 octahedra and FeO4 tetrahedra in the (101)-oriented SrFeO2.5 thin film connect to ScO6 octahedra in DyScO3. As a consequence of accommodating a structural mismatch, the alternately ordered arrangement of oxygen vacancies is significantly disturbed and reconstructed in the 2 nm thick heterointerface region. The stabilized heterointerface structure consists of Fe3+ octahedra with an oxygen vacancy disorder. The melting of the oxygen vacancy order, which in bulk SrFeO2.5 occurs at 1103 K, is induced at the present heterointerface at ambient temperatures.

16.
Nat Mater ; 15(4): 432-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950594

RESUMO

Strong correlations between electrons, spins and lattices--stemming from strong hybridization between transition metal d and oxygen p orbitals--are responsible for the functional properties of transition metal oxides. Artificial oxide heterostructures with chemically abrupt interfaces provide a platform for engineering bonding geometries that lead to emergent phenomena. Here we demonstrate the control of the oxygen coordination environment of the perovskite, SrRuO3, by heterostructuring it with Ca0.5Sr0.5TiO3 (0-4 monolayers thick) grown on a GdScO3 substrate. We found that a Ru-O-Ti bond angle of the SrRuO3 /Ca0.5Sr0.5TiO3 interface can be engineered by layer-by-layer control of the Ca0.5Sr0.5TiO3 layer thickness, and that the engineered Ru-O-Ti bond angle not only stabilizes a Ru-O-Ru bond angle never seen in bulk SrRuO3, but also tunes the magnetic anisotropy in the entire SrRuO3 layer. The results demonstrate that interface engineering of the oxygen coordination environment allows one to control additional degrees of freedom in functional oxide heterostructures.

17.
Phys Chem Chem Phys ; 18(1): 197-204, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26603263

RESUMO

BaTiO3-δ, i.e. oxygen-deficient barium titanate (BaTiO3), thin films grown on GdScO3(110) substrates with SrRuO3 conductive electrodes by pulsed laser deposition are studied by X-ray diffraction and conductive AFM to characterize their structure and nanoscale electronic properties. Bias- and time-dependent resistive switching measurements reveal a strong dependence on the oxygen vacancy concentration, which can be tuned by after-growth oxygen cooling conditions of thin films. The results indicate that the resistive switching properties of BaTiO3-δ can be enhanced by controlling oxygen deficiency and provide new insight for potential non-volatile resistive random-access memory (RRAM) applications.

18.
Dalton Trans ; 44(23): 10594-607, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848647

RESUMO

Controlling structural distortions that are closely related to functional properties in transition-metal oxides is a key not only to exploring novel phenomena but also to developing novel oxide-based electronic devices. In this review article, we overview investigations revealing that oxygen displacement at the heterointerface is a key parameter characterizing structure-property relationships of heterostructures. We further demonstrate that the interface engineering of the oxygen displacement is useful to control structural and electronic properties of strained oxides.

19.
Sci Rep ; 5: 7894, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600001

RESUMO

Oxygen coordination of transition metals is a key for functional properties of transition-metal oxides, because hybridization of transition-metal d and oxygen p orbitals determines correlations between charges, spins and lattices. Strain often modifies the oxygen coordination environment and affects such correlations in the oxides, resulting in the emergence of unusual properties and, in some cases, fascinating behaviors. While these strain effects have been studied in many of the fully-oxygenated oxides, such as ABO3 perovskites, those in oxygen-deficient oxides consisting of various oxygen coordination environments like tetrahedra and pyramids as well as octahedra remain unexplored. Here we report on the discovery of a strain-induced significant increase, by 550 K, in the metal-insulator transition temperature of an oxygen-deficient Fe oxide epitaxial thin film. The observed transition at 620 K is ascribed to charge disproportionation of Fe(3.66+) into Fe(4+) and Fe(3+), associated with oxygen-vacancy ordering. The significant increase in the metal-insulator transition temperature, from 70 K in the bulk material, demonstrates that epitaxial growth of oxygen-deficient oxides under substrate-induced strain is a promising route for exploring novel functionality.

20.
Dalton Trans ; 43(39): 14596-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25134664

RESUMO

When LaAlO3/CaFeO2.5 thin-film heterostructures made on SrTiO3 were annealed with CaH2 at low temperatures below 300 °C, the brownmillerite CaFeO2.5 layer was reduced to CaFeO2 with an infinite-layer structure while both the LaAlO3 capping layer and the SrTiO3 substrate remained intact. The reduction behaviour strongly depends on the lattice matching of LaAlO3 to CaFeO2.5, suggesting that oxygen ions migrate through the coherently grown LaAlO3 layer of the heterostructure predominantly in the out-of-plane direction. The structural defects near the interface in the relaxed-structure LaAlO3 capping layer prevent the oxygen ions from migrating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...