Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 262: 115319, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37542982

RESUMO

Ultraviolet B (UV-B, 280-320 nm) radiation is a major environmental stressor for aquatic organisms on Earth's surface. Its effects on biological systems are well known, but the mechanisms by which organisms respond and adapt to UV-B radiation are still being explored. In this study, we investigated the effects of UV-B radiation on the monogonont rotifer Brachionus asplanchnoidis, focusing on physiological parameters, antioxidant systems, DNA damage, and DNA repair-related molecular mechanism. Our results showed that the LD50 was at 28.53 kJ/m2, indicating strong tolerance to UV-B. However, UV-B radiation caused adverse effects on growth and reproduction, with shortened reproductive period and longevity, decreased fecundity and hatchability, and inhibition of population growth. Biochemical analyses revealed severe oxidative damage and lipid peroxidation, with increased ROS and MDA levels. Activities of antioxidant enzymes were highly induced at low doses but decreased at high doses. DNA damage also occurred in UV-B-exposed rotifers. Furthermore, selected DNA repair-related genes were up-regulated in a dose-dependent manner. These findings provide a comprehensive understanding of the effects of UV-B radiation on rotifers and highlight the importance of considering both ecological and molecular responses in assessing the impact of UV-B radiation on aquatic organisms.

2.
Arch Gerontol Geriatr ; 111: 104994, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36963346

RESUMO

Epigenetic modifications play an important role in the regulation of senescence. N6-methyladenosine (m6A) is the most abundant modification of mRNA. However, the impact of m6A on senescence remains largely unknown at the animal individual level. Standard model organisms Caenorhabditis elegans and Drosophila melanogaster lack many gene homologs of vertebrate m6A system that are present in other invertebrates. In this study, we employed a small aquatic invertebrate Brachionus plicatilis which has been used in aging studies for nearly 100 years to study how m6A affects aging. Phylogenetic analysis confirmed that rotifers' m6A pathway has a conserved methyltransferase complex but no demethylases and the m6A reading system was more akin to that of vertebrates than that of D. melanogaster. m6A methyltransferases are highly expressed during development but reduces dramatically during aging. Knockdown of METTL3 results in decreased fecundity and premature senescence of rotifers. Furthermore, RT-qPCR analysis indicates a role for m6A in the nonhomologous end joining (NHEJ) pathway of DNA double-strand breaks (DSBs) repair. Altogether, our work reveals a senescence regulatory model for the rotifer METTL3-m6A-NHEJ pathway.


Assuntos
Rotíferos , Animais , Humanos , Rotíferos/genética , Drosophila melanogaster , Filogenia , Metiltransferases/genética
3.
Ecotoxicol Environ Saf ; 189: 110046, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31835043

RESUMO

Ammonia nitrogen elevated is one of the commonest problem in the aquatic system, which caused a great threat to the survival and growth of prawn. However, little is know about the ammonia metabolism and detoxification strategy of prawn. In this study, the effects of ammonia-N (0, 0.108, 0.216, 0.324, or 0.54 mg L-1) on growth and metabolizing enzymes in hepatopancreas of Macrobrachium rosenbergii, including glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamate dehydrogenase (GDH), were investigated. The metabolome of its muscle was also analyzed after exposure to ammonia-N (0, 0.108, 0.324, or 0.54 mg L-1) for 20 days. The survival rate of M. rosenbergii decreased significantly after treatment with 0.54 mg L-1 ammonia-N compared with that in the other groups. However, ammonia-N had no significant effect on the growth of the river prawn after exposure for 20 days. GS activity increased significantly after exposure to 0.108 mg L-1 ammonia-N compared with the control and other ammonia-N-treated groups. Hepatopancreatic GDH activity was lower in the prawns treated with 0.216, 0.324, or 0.54 mg L-1 ammonia-N than in the control by 34.70%, 38.80%, or 41.94%, respectively. Ammonia-N had no significant effect on hepatopancreatic AST or ALT activity. Urea nitrogen was higher in the prawns treated with 0.216 mg L-1 ammonia-N than in the control or those treated with 0.54 mg L-1 ammonia-N. Ammonia-N had significant effects on the lipid, carbohydrate. and protein metabolism of M. rosenbergii, including purine metabolism, amino sugar and nucleotide sugar metabolism, α-linolenic acid metabolism, arginine and proline metabolism, glutathione metabolism, and phosphonate and phosphate metabolism, and on the terpenoid biosynthesis, lysine degradation, and lysine biosynthesis pathways. High concentrations of ammonia-N stress increased the content of glutamate and arginine, which may participate in the urea cycle, which synthesizes glutamine or urea to eliminate ammonia toxicity.


Assuntos
Amônia/toxicidade , Hepatopâncreas/enzimologia , Metaboloma/efeitos dos fármacos , Nitrogênio/toxicidade , Palaemonidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Glutamato Desidrogenase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamina/biossíntese , Hepatopâncreas/efeitos dos fármacos , Palaemonidae/enzimologia , Palaemonidae/crescimento & desenvolvimento , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...