Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genome Ed ; 4: 843885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465025

RESUMO

Background: Gene correction via homology directed repair (HDR) in patient-derived induced pluripotent stem (iPS) cells for regenerative medicine are becoming a more realistic approach to develop personalized and mutation-specific therapeutic strategies due to current developments in gene editing and iPSC technology. Cystic fibrosis (CF) is the most common inherited disease in the Caucasian population, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Since CF causes significant multi-organ damage and with over 2,000 reported CFTR mutations, CF patients could be one prominent population benefiting from gene and cell therapies. When considering gene-editing techniques for clinical applications, seamless gene corrections of the responsible mutations, restoring native "wildtype" DNA sequence without remnants of drug selectable markers or unwanted DNA sequence changes, would be the most desirable approach. Result: The studies reported here describe the seamless correction of the W1282X CFTR mutation using CRISPR/Cas9 nickases (Cas9n) in iPS cells derived from a CF patient homozygous for the W1282X Class I CFTR mutation. In addition to the expected HDR vector replacement product, we discovered another class of HDR products resulting from vector insertion events that created partial duplications of the CFTR exon 23 region. These vector insertion events were removed via intrachromosomal homologous recombination (IHR) enhanced by double nicking with CRISPR/Cas9n which resulted in the seamless correction of CFTR exon 23 in CF-iPS cells. Conclusion: We show here the removal of the drug resistance cassette and generation of seamless gene corrected cell lines by two independent processes: by treatment with the PiggyBac (PB) transposase in vector replacements or by IHR between the tandemly duplicated CFTR gene sequences.

2.
Br J Haematol ; 192(2): 395-404, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216968

RESUMO

Hereditary persistence of fetal haemoglobin (HPFH) is the major modifier of the clinical severity of ß-thalassaemia. The homozygous mutation c.-196 C>T in the Aγ-globin (HBG1) promoter, which causes Sardinian δß0 -thalassaemia, is able to completely rescue the ß-major thalassaemia phenotype caused by the ß0 39-thalassaemia mutation, ensuring high levels of fetal haemoglobin synthesis during adulthood. Here, we describe a CRISPR/Cas9 genome-editing approach, combined with the non-homologous end joining (NHEJ) pathway repair, aimed at reproducing the effects of this naturally occurring HPFH mutation in both HBG promoters. After selecting the most efficient guide RNA in K562 cells, we edited the HBG promoters in human umbilical cord blood-derived erythroid progenitor 2 cells (HUDEP-2) and in haematopoietic stem and progenitor cells (HSPCs) from ß0 -thalassaemia patients to assess the therapeutic potential of HbF induction. Our results indicate that small deletions targeting the -196-promoter region restore high levels of fetal haemoglobin (HbF) synthesis in all cell types tested. In pools of HSPCs derived from homozygous ß0 39-thalassaemia patients, a 20% editing determined a parallel 20% increase of HbF compared to unedited pools. These results suggest that editing the region of HBG promoters around the -196 position has the potential to induce therapeutic levels of HbF in patients with most types of ß-thalassaemia irrespective of the ß-globin gene (HBB) mutations.


Assuntos
Hemoglobina Fetal/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Talassemia beta/genética , Sistemas CRISPR-Cas , Células Cultivadas , Células HEK293 , Humanos , Células K562 , Regulação para Cima
3.
Mol Ther Nucleic Acids ; 5: e273, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26730810

RESUMO

Cystic fibrosis (CF) is a recessive inherited disease associated with multiorgan damage that compromises epithelial and inflammatory cell function. Induced pluripotent stem cells (iPSCs) have significantly advanced the potential of developing a personalized cell-based therapy for diseases like CF by generating patient-specific stem cells that can be differentiated into cells that repair tissues damaged by disease pathology. The F508del mutation in airway epithelial cell-derived CF-iPSCs was corrected with small/short DNA fragments (SDFs) and sequence-specific TALENs. An allele-specific PCR, cyclic enrichment strategy gave ~100-fold enrichment of the corrected CF-iPSCs after six enrichment cycles that facilitated isolation of corrected clones. The seamless SDF-based gene modification strategy used to correct the CF-iPSCs resulted in pluripotent cells that, when differentiated into endoderm/airway-like epithelial cells showed wild-type (wt) airway epithelial cell cAMP-dependent Cl ion transport or showed the appropriate cell-type characteristics when differentiated along mesoderm/hematopoietic inflammatory cell lineage pathways.

4.
Radiology ; 249(2): 560-71, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18780824

RESUMO

PURPOSE: To provide evidence that vascular endothelial growth factor (VEGF) genes delivered transendocardially with magnetic resonance (MR) imaging guidance may neovascularize or improve vascular recruitment in occlusive infarction. MATERIALS AND METHODS: All experimental procedures received approval from the institutional committee on animal research. Dogs with permanent coronary artery occlusion were imaged twice (3 days after occlusion for assessment of acute infarction; a mean of 50 days after occlusion +/- 3 [standard error of the mean] for assessment of chronic infarction). A mixture of plasmid VEGF and plasmid LacZ (n = 6, treated animals) or plasmid LacZ and sprodiamide (n = 6, placebo control animals) was delivered to four sites. MR fluoroscopy was used to target and monitor delivery of genes. The effectiveness of this delivery approach was determined by using MR imaging methods to assess perfusion, left ventricular (LV) function, myocardial viability, and infarct resorption. Histologic evaluation of neovascularization was then performed. RESULTS: MR fluoroscopic guidance of injectates was successful in both groups. Treated animals with chronic, but not those with acute, infarction showed the following differences compared with control animals: (a) steeper mean maximum upslope perfusion (200 sec(-1) +/- 32 vs 117 sec(-1) +/- 15, P = .02), (b) higher peak signal intensity (1667 arbitrary units +/- 100 vs 1132 arbitrary units +/- 80, P = .002), (c) increased ejection fraction (from 27.9% +/- 1.2 to 35.3% +/- 1.6, P = .001), (d) smaller infarction size (as a percentage of LV mass) at MR imaging (8.5% +/- 0.9 vs 11.3% +/- 0.9, P = .048) and triphenyltetrazolium chloride staining (9.4% +/- 1.5 vs 12.7% +/- 0.4, P = .05), and (e) higher vascular density (as number of vessels per square millimeter) at the border (430 +/- 117 vs 286 +/- 19, P = .0001) and core (307 +/- 112 vs 108 +/- 17, P = .0001). CONCLUSION: The validity of plasmid VEGF gene delivered with MR fluoroscopic guidance into occlusive infarction was confirmed by neovascularization associated with improved perfusion, LV function, and infarct resorption.


Assuntos
Oclusão Coronária/tratamento farmacológico , Terapia Genética/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Análise de Variância , Animais , Meios de Contraste/administração & dosagem , Cães , Meglumina/administração & dosagem , Compostos Organometálicos/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/genética
5.
Front Biosci ; 11: 3190-8, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16720385

RESUMO

Delivery of therapeutic genes represents a fascinating possibility to accelerate injury-repairing process in tissues that are otherwise difficult to treat, such as cerebral ischemia. Current studies indicate that gene transfer-induced focal angiogenesis in the brain may provide an important therapeutic strategy. In the present study, we reported the efficacy of induction of angiogenesis with an adeno-associated virus (AAV) vector expressing the 165 amino acid isoform of vascular endothelial growth factor (VEGF165). We found AAV serotype 1 has more efficiency in transduction of the brain tissue than AAV serotype 2. Quantitative vessel counting showed that microvessels in AAV-VEGF transduced mice significantly increased from 1 week up to 12 weeks compared to the control groups (AAV-VEGF: 316+/-58 vs. AAV-lacZ: 180+/-34 and saline: 152+/-35 vessels/mm2, at 6 weeks, p<0.05). Proliferating cell nuclear antigen (PCNA) staining confirmed these microvessels were actively proliferating. Double-labeled fluorescence staining demonstrated that neurons, astrocytes, and endothelial cells could express VEGF following AAV-VEGF gene transfer. AAV vectors did not elicit a detectable inflammatory response, cell loss or neuronal damage. Our data underline the importance of angiogenesis in the brain tissue and indicate that VEGF gene transfer might present a valuable approach to treat brain ischemic disorders.


Assuntos
Encéfalo/irrigação sanguínea , Dependovirus/genética , Terapia Genética , Neovascularização Fisiológica/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Isquemia Encefálica/terapia , Proliferação de Células , Dependovirus/classificação , Técnicas de Transferência de Genes , Vetores Genéticos , Óperon Lac , Masculino , Camundongos , Camundongos Endogâmicos , Sorotipagem , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
6.
Mol Ther ; 7(1): 44-51, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12573617

RESUMO

Critical limb ischemia is an important clinical problem that often leads to disability and limb loss. Vascular endothelial growth factor (VEGF), delivered either as recombinant protein or as gene therapy, has been shown to promote both collateral artery formation (arteriogenesis) and capillary angiogenesis in animal models of hindlimb ischemia. However, none of the previous studies has demonstrated an improvement in tissue hypoxia, the condition that drives the molecular response to ischemia. Furthermore, the optimal vector and route of gene delivery have not been determined. Recently, adeno-associated viral (AAV) vectors, which efficiently transduce skeletal muscle and produce sustained transgene expression, have been used as gene therapy vectors. We asked whether an intra-arterial injection of AAV-VEGF(165) normalizes muscle oxygen tension by increasing skeletal muscle oxygen tension, and promotes arteriogenesis and angiogenesis in a rat model of severe hindlimb ischemia. We found that AAV-VEGF treatment normalized muscle oxygen tension in the ischemic limb. In contrast, vehicle and AAV-lacZ-treated limbs remained ischemic. Collateral arteries were more numerous in AAV-VEGF-treated rats, but, surprisingly, capillaries were not. We conclude that intra-arterial AAV-mediated gene transfer of AAV-VEGF(165) normalizes muscle oxygen tension and leads to arteriogenesis in rats with severe hindlimb ischemia.


Assuntos
Dependovirus/genética , Fatores de Crescimento Endotelial/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Membro Posterior/irrigação sanguínea , Peptídeos e Proteínas de Sinalização Intercelular/genética , Isquemia/fisiopatologia , Linfocinas/genética , Músculo Esquelético/irrigação sanguínea , Oxigênio/metabolismo , Animais , Sequência de Bases , Primers do DNA , Fatores de Crescimento Endotelial/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Linfocinas/sangue , Neovascularização Fisiológica , Ratos , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , beta-Galactosidase/genética
7.
Blood Cells Mol Dis ; 29(2): 145-58, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12490281

RESUMO

The erythroid-specific enhancer within hypersensitivity site 2 (HS2) of the human beta-globin locus control region is required for high level globin gene expression. We used an oligonucleotide of the NF-E2 tandem repeat, within HS2, as recognition site probe to screen a K562 cDNA library for interacting transcription factors. A 2.3 kb full length cDNA encoding the b-zip transcription factor MafF was isolated. MafF can form both homodimers and high affinity heterodimers with Nrf1, Nrf2 and Nf-E2, three members of the CNC-bZip family. Despite obvious structural similarities with the other small Maf proteins, MafF differs in its tissue distribution and its inability to repress transcription when overexpressed as homodimer. In fact, in different cell lines and on different promoters (gamma-globin, beta-globin and glutamylcysteine synthetase genes) the MafF homodimers do not appreciably affect transcription of target promoters, whereas MafF/CNC member heterodimers act as weak transcriptional activators. Even though MafF was cloned using probes derived from the globin LCR, it is in the context of the GCSl promoter and in combination with Jun that MafF shows a rather distinct and specific regulatory role. These observations suggest that a complex network of small Maf and CNC-AP1 protein interactions might be involved in regulating transcription in diverse tissues or developmental stages.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a DNA/metabolismo , Globinas/genética , Proteínas Nucleares/fisiologia , Fatores de Transcrição/metabolismo , Ativação Transcricional , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , DNA Complementar/isolamento & purificação , Proteínas de Ligação a DNA/fisiologia , Dimerização , Fatores de Ligação de DNA Eritroide Específicos , Humanos , Células K562 , Fator de Transcrição MafF , Dados de Sequência Molecular , Fator de Transcrição NF-E2 , Subunidade p45 do Fator de Transcrição NF-E2 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Elementos de Resposta , Sequências de Repetição em Tandem , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...