Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACC Basic Transl Sci ; 8(6): 658-674, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37426530

RESUMO

After myocardial infarction (MI), fibroblasts progress from proliferative to myofibroblast states, resulting in fibrosis. Platelet-derived growth factors (PDGFs) are reported to induce fibroblast proliferation, myofibroblast differentiation, and fibrosis. However, we have previously shown that PDGFs improve heart function post-MI without increasing fibrosis. We treated human cardiac fibroblasts with PDGF isoforms then performed RNA sequencing to show that PDGFs reduced cardiac fibroblasts myofibroblast differentiation and downregulated cell cycle pathways. Using mouse/pig MI models, we reveal that PDGF-AB infusion increases cell-cell interactions, reduces myofibroblast differentiation, does not affect proliferation, and accelerates scar formation. RNA sequencing of pig hearts after MI showed that PDGF-AB reduces inflammatory cytokines and alters both transcript variants and long noncoding RNA expression in cell cycle pathways. We propose that PDGF-AB could be used therapeutically to manipulate post-MI scar maturation with subsequent beneficial effects on cardiac function.

2.
Front Bioeng Biotechnol ; 11: 1127996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409168

RESUMO

Introduction: Heart failure due to myocardial infarction is a progressive and debilitating condition, affecting millions worldwide. Novel treatment strategies are desperately needed to minimise cardiomyocyte damage after myocardial infarction and to promote repair and regeneration of the injured heart muscle. Plasma polymerized nanoparticles (PPN) are a new class of nanocarriers which allow for a facile, one-step functionalization with molecular cargo. Methods: Here, we conjugated platelet-derived growth factor AB (PDGF-AB) to PPN, engineering a stable nano-formulation, as demonstrated by optimal hydrodynamic parameters, including hydrodynamic size distribution, polydisperse index (PDI) and zeta potential, and further demonstrated safety and bioactivity in vitro and in vivo. We delivered PPN-PDGF-AB to human cardiac cells and directly to the injured rodent heart. Results: We found no evidence of cytotoxicity after delivery of PPN or PPN-PDGFAB to cardiomyocytes in vitro, as determined through viability and mitochondrial membrane potential assays. We then measured contractile amplitude of human stem cell derived cardiomyocytes and found no detrimental effect of PPN on cardiomyocyte contractility. We also confirmed that PDGF-AB remains functional when bound to PPN, with PDGF receptor alpha positive human coronary artery vascular smooth muscle cells and cardiac fibroblasts demonstrating migratory and phenotypic responses to PPN-PDGF-AB in the same manner as to unbound PDGF-AB. In our rodent model of PPN-PDGF-AB treatment after myocardial infarction, we found a modest improvement in cardiac function in PPN-PDGF-AB treated hearts compared to those treated with PPN, although this was not accompanied by changes in infarct scar size, scar composition, or border zone vessel density. Discussion: These results demonstrate safety and feasibility of the PPN platform for delivery of therapeutics directly to the myocardium. Future work will optimize PPN-PDGF-AB formulations for systemic delivery, including effective dosage and timing to enhance efficacy and bioavailability, and ultimately improve the therapeutic benefits of PDGF-AB in the treatment of heart failure cause by myocardial infarction.

3.
Circ Res ; 132(1): 72-86, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36453283

RESUMO

BACKGROUND: Myocardial infarction (MI) is among the leading causes of death worldwide. Following MI, necrotic cardiomyocytes are replaced by a stiff collagen-rich scar. Compared to collagen, the extracellular matrix protein elastin has high elasticity and may have more favorable properties within the cardiac scar. We sought to improve post-MI healing by introducing tropoelastin, the soluble subunit of elastin, to alter scar mechanics early after MI. METHODS AND RESULTS: We developed an ultrasound-guided direct intramyocardial injection method to administer tropoelastin directly into the left ventricular anterior wall of rats subjected to induced MI. Experimental groups included shams and infarcted rats injected with either PBS vehicle control or tropoelastin. Compared to vehicle treated controls, echocardiography assessments showed tropoelastin significantly improved left ventricular ejection fraction (64.7±4.4% versus 46.0±3.1% control) and reduced left ventricular dyssynchrony (11.4±3.5 ms versus 31.1±5.8 ms control) 28 days post-MI. Additionally, tropoelastin reduced post-MI scar size (8.9±1.5% versus 20.9±2.7% control) and increased scar elastin (22±5.8% versus 6.2±1.5% control) as determined by histological assessments. RNA sequencing (RNAseq) analyses of rat infarcts showed that tropoelastin injection increased genes associated with elastic fiber formation 7 days post-MI and reduced genes associated with immune response 11 days post-MI. To show translational relevance, we performed immunohistochemical analyses on human ischemic heart disease cardiac samples and showed an increase in tropoelastin within fibrotic areas. Using RNA-seq we also demonstrated the tropoelastin gene ELN is upregulated in human ischemic heart disease and during human cardiac fibroblast-myofibroblast differentiation. Furthermore, we showed by immunocytochemistry that human cardiac fibroblast synthesize increased elastin in direct response to tropoelastin treatment. CONCLUSIONS: We demonstrate for the first time that purified human tropoelastin can significantly repair the infarcted heart in a rodent model of MI and that human cardiac fibroblast synthesize elastin. Since human cardiac fibroblasts are primarily responsible for post-MI scar synthesis, our findings suggest exciting future clinical translation options designed to therapeutically manipulate this synthesis.


Assuntos
Infarto do Miocárdio , Miocárdio , Humanos , Ratos , Animais , Miocárdio/metabolismo , Elastina/metabolismo , Tropoelastina/genética , Tropoelastina/metabolismo , Cicatriz , Volume Sistólico , Função Ventricular Esquerda , Miócitos Cardíacos/metabolismo , Colágeno/metabolismo , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...