Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(26): 18033-44, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821722

RESUMO

The hearts of neonatal mice and adult zebrafish can regenerate after injury through proliferation of preexisting cardiomyocytes. However, adult mammals are not capable of cardiac regeneration because almost all cardiomyocytes exit their cell cycle. Exactly how the cell cycle exit is maintained and how many adult cardiomyocytes have the potential to reenter the cell cycle are unknown. The expression and activation levels of main cyclin-cyclin-dependent kinase (CDK) complexes are extremely low or undetectable at adult stages. The nuclear DNA content of almost all cardiomyocytes is 2C, indicating the cell cycle exit from G1-phase. Here, we induced expression of cyclin D1, which regulates the progression of G1-phase, only in differentiated cardiomyocytes of adult mice. In these cardiomyocytes, S-phase marker-positive cardiomyocytes and the expression of main cyclins and CDKs increased remarkably, although cyclin B1-CDK1 activation was inhibited in an ATM/ATR-independent manner. The phosphorylation pattern of CDK1 and expression pattern of Cdc25 subtypes suggested that a deficiency in the increase in Cdc25 (a and -b), which is required for M-phase entry, inhibited the cyclin B1-CDK1 activation. Finally, analysis of cell cycle distribution patterns showed that >40% of adult mouse cardiomyocytes reentered the cell cycle by the induction of cyclin D1. The cell cycle of these binucleated cardiomyocytes was arrested before M-phase, and many mononucleated cardiomyocytes entered endoreplication. These data indicate that silencing the cyclin D1 expression is necessary for the maintenance of the cell cycle exit and suggest a mechanism that involves inhibition of M-phase entry.


Assuntos
Ciclo Celular , Ciclina D1/genética , Regulação para Baixo , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina D1/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Int J Hepatol ; 2012: 476820, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701178

RESUMO

Background. Acute liver injury induced by administration of carbon tetrachloride (CCl(4)) has used a model of wound repair in the rat liver. Previously, we reported transient expression of bone morphogenetic protein (Bmp) 2 or Bmp4 at 6-24 h after CCl(4) treatment, suggesting a role of BMP signaling in the wound healing response in the injured liver. In the present study, we investigated the biological meaning of the transient Bmp expression in liver injury. Methods. Using conditional knockout mice carrying a floxed exon in the BMP receptor 1A gene, we determined the hepatic gene expressions and proliferative activity following CCl(4)-treated liver. Results. We observed retardation of the healing response in the knockout mice treated with CCl(4), including aggravated histological feature and reduced expressions of the albumin and Tdo2 genes, and a particular decrease in the proliferative activity shown by Ki-67 immunohistochemistry. Conclusion. Our findings suggest a crucial role of BMP signaling in the amelioration of acute liver injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA