Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408514, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954391

RESUMO

Electron transfers in multinuclear metal complexes are the origin of their unique functionalities both in natural and artificial systems. However, electron transfers in multinuclear metal complexes are generally complicated, and predicting and controlling these electron transfers is extremely difficult. Herein, we report the precise manipulation of the electron transfers in multinuclear metal complexes. The development of a rational synthetic strategy afforded a series of pentanuclear metal complexes which composed of metal ions and 3,5-bis(2-pyridyl)pyrazole (Hbpp) as a platform to probe the phenomena. Electrochemical and spectroscopic investigations clarified overall picture of the electron transfers in the pentanuclear complexes. In addition, unique electron transfer behaviors, in which the reduction of a metal center occurs during the oxidation of the overall complex, were identified. We also elucidated the two dominant factors that determine the manner of the electron transfers. Our results provide comprehensive guidelines for interpreting the complicated electron transfers in multinuclear metal complexes.

2.
Faraday Discuss ; 198: 181-196, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28272638

RESUMO

A series of group 8 metal complexes with the same molecular framework, [M(PY5Me2)L]n+ (M = Fe, Ru, and Os; PY5Me2 = 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine; L = monodentate ligand), were successfully synthesized and structurally characterized. The spectroscopic and electrochemical properties as well as the catalytic activity for water oxidation of these complexes were investigated.

3.
Dalton Trans ; 44(34): 15334-42, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26237014

RESUMO

The incorporation of active sites into metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) is an attractive way to functionalise these materials. However, the methodology to organise substitution-inert metal-based secondary building units (SBUs) with active sites into MOFs or PCPs via coordination driven self-assembly is severely limited. In this study, we successfully assembled substitution-inert paddle-wheel Rh(II) dimers to afford three novel porous frameworks, Rh2(ppeb)4(THF)2 (1-THF), Rh2(ppeb)4(3-pentanone)2 (1-PN) and Rh2(ppeb)4(1-adamantylamine)2 (1-AD) (ppeb = 4-[(perfluorophenyl)ethynyl]benzoate), by using non-covalent interactions. Multipoint arene-perfluoroarene (Ar-Ar(F)) interactions, which allow the unidirectional face-to-face interaction mode of aromatic rings, were used to assemble the substitution-inert paddle-wheel Rh(II) dimers. The obtained frameworks were structurally characterisation by single crystal X-ray diffraction, and it is found that all structures exhibited a one-dimensional channel with active axial sites exposed to the pores. The porous properties of the obtained frameworks were also investigated by thermogravimetric analysis, gas adsorption and powder X-ray diffraction measurements. Moreover, the ligand substitution reaction at the active axial sites was examined at the crystalline state and the flexible structural transformation with the change of channel shapes and sizes was observed.


Assuntos
Complexos de Coordenação/química , Flúor/química , Metais/química , Ródio/química , Adsorção , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Dimerização , Hidrogênio/química , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Molecular , Nitrogênio/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...