Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
AJR Am J Roentgenol ; 220(2): 283-295, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36129222

RESUMO

BACKGROUND. Iterative reconstruction (IR) techniques are susceptible to contrast-dependent spatial resolution, limiting overall radiation dose reduction potential. Deep learning image reconstruction (DLIR) may mitigate this limitation. OBJECTIVE. The purpose of our study was to evaluate low-contrast detectability performance and radiation-saving potential of a DLIR algorithm in comparison with filtered back projection (FBP) and IR using a human multireader noninferiority study design and task-based observer modeling. METHODS. A dual-phantom construct, consisting of a low-contrast detectability module (21 low-contrast hypoattenuating objects in seven sizes [2.4-10.0 mm] and three contrast levels [-15, -10, -5 HU] embedded within liver-equivalent background) and a phantom, was imaged at five radiation exposures (CTDIvol range, 1.4-14.0 mGy; size-specific dose estimate, 2.5-25.0 mGy; 90%-, 70%-, 50%-, and 30%-reduced radiation levels and full radiation level) using an MDCT scanner. Images were reconstructed using FBP, hybrid IR (ASiR-V), and DLIR (TrueFidelity). Twenty-four readers of varying experience levels evaluated images using a two-alternative forced choice. A task-based observer model (detectability index [d']) was calculated. Reader performance was estimated by calculating the AUC using a noninferiority method. RESULTS. Compared with FBP and IR methods at routine radiation levels, DLIR medium and DLIR high settings showed noninferior performance through a 90% radiation reduction (except DLIR medium setting at 70% reduced level). The IR method was non-inferior to routine radiation FBP only for 30% and 50% radiation reductions. No significant difference in d' was observed between routine radiation FBP and DLIR high setting through a 70% radiation reduction. Reader experience was not correlated with diagnostic accuracy (R2 = 0.005). CONCLUSION. Compared with FBP or IR methods at routine radiation levels, certain DLIR algorithm weightings yielded noninferior low-contrast detectability with radiation reductions of up to 90% as measured by 24 human readers and up to 70% as assessed by a task-based observer model. CLINICAL IMPACT. DLIR has substantial potential to preserve contrast-dependent spatial resolution for the detection of hypoattenuating lesions at decreased radiation levels in a phantom model, addressing a major shortcoming of current IR techniques.


Assuntos
Aprendizado Profundo , Humanos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador
2.
3.
Radiology ; 302(1): 164-174, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698569

RESUMO

Background Diagnostic reference levels (DRLs) and achievable doses (ADs) were developed for the 10 most commonly performed pediatric CT examinations in the United States using the American College of Radiology Dose Index Registry. Purpose To develop robust, current, national DRLs and ADs for the 10 most commonly performed pediatric CT examinations as a function of patient age and size. Materials and Methods Data on 10 pediatric (ie, patients aged 18 years and younger) CT examinations performed between 2016 and 2020 at 1625 facilities were analyzed. For head and neck examinations, dose indexes were analyzed based on patient age; for body examinations, dose indexes were analyzed for patient age and effective diameter. Data from 1 543 535 examinations provided medians for AD and 75th percentiles for DRLs for volume CT dose index (CTDIvol), dose-length product (DLP), and size-specific dose estimate (SSDE). Results Of all facilities analyzed, 66% of the facilities (1068 of 1625) were community hospitals, 16% (264 of 1625) were freestanding centers, 9.5% (154 of 1625) were academic facilities, and 3.5% (57 of 1625) were dedicated children's hospitals. Fifty-two percent of the patients (798 577 of 1 543 535) were boys, and 48% (744 958 of 1 543 535) were girls. The median age of patients was 14 years (boys, 13 years; girls, 15 years). The head was the most frequent anatomy examined with CT (876 655 of 1 543 535 examinations [57%]). For head without contrast material CT examinations, the age-based CTDIvol AD ranged from 19 to 46 mGy, and DRL ranged from 23 to 55 mGy, with both AD and DRL increasing with age. For body examinations, DRLs and ADs for size-based CTDIvol, SSDE, and DLP increased consistently with the patient's effective diameter. Conclusion Diagnostic reference levels and achievable doses as a function of patient age and effective diameter were developed for the 10 most commonly performed CT pediatric examinations using American College of Radiology Dose Index Registry data. These benchmarks can guide CT facilities in adjusting pediatric CT protocols and resultant doses for their patients. © RSNA, 2021 An earlier incorrect version appeared online. This article was corrected on October 29, 2021.


Assuntos
Níveis de Referência de Diagnóstico , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Guias de Prática Clínica como Assunto , Sistema de Registros , Estados Unidos
5.
Urology ; 160: 60-68, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34757049

RESUMO

OBJECTIVE: To convene a multi-disciplinary panel to develop a pathway for Emergency Department (ED) patients with suspected nephrolithiasis and then prospectively evaluate its effect on patient care. MATERIALS AND METHODS: The STONE Pathway was developed and linked to order sets within our Electronic Health Record in April 2019. Records were prospectively reviewed for ED patients who underwent ultrasound or Computerized Tomography (CT) to evaluate suspected nephrolithiasis between January 2019 and August 2019 within our institution. The primary outcome measure was the proportion of patients whose ED CT was low dose (<4 mSv). Secondary outcome measures included receipt of pathway-concordant pain medications and urine strainers. Order set utilization was evaluated as a process measure. Balance measures assessed included repeat ED visits, imaging, hospitalizations, and a urologic clinic visit or surgery within 30 days of discharge. RESULTS: 441 patients underwent ED imaging, of whom 261 (59%) were evaluated for suspected nephrolithiasis. The STONE Pathway was used in 50 (30%) eligible patients. Patients treated with the Pathway were more likely to undergo low-dose CTs (49% vs 23%, P <.001), and receive guideline-concordant pain medications such as NSAIDs (90% vs 62%, P <.001), and were less likely to return to the ED within 30 days (13% vs 2%, P = .01). These measures demonstrated special cause variation following Pathway release. CONCLUSION: Clinical pathways increase compliance with evidence-based practices for pain control and imaging in nephrolithiasis emergency care and may improve the delivery of value-based care.


Assuntos
Procedimentos Clínicos , Cálculos Renais , Emergências , Serviço Hospitalar de Emergência , Feminino , Hospitalização , Humanos , Masculino , Dor
6.
Med Phys ; 48(8): 4523-4531, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34231224

RESUMO

The past decade has seen the increasing integration of magnetic resonance (MR) imaging into radiation therapy (RT). This growth can be contributed to multiple factors, including hardware and software advances that have allowed the acquisition of high-resolution volumetric data of RT patients in their treatment position (also known as MR simulation) and the development of methods to image and quantify tissue function and response to therapy. More recently, the advent of MR-guided radiation therapy (MRgRT) - achieved through the integration of MR imaging systems and linear accelerators - has further accelerated this trend. As MR imaging in RT techniques and technologies, such as MRgRT, gain regulatory approval worldwide, these systems will begin to propagate beyond tertiary care academic medical centers and into more community-based health systems and hospitals, creating new opportunities to provide advanced treatment options to a broader patient population. Accompanying these opportunities are unique challenges related to their adaptation, adoption, and use including modification of hardware and software to meet the unique and distinct demands of MR imaging in RT, the need for standardization of imaging techniques and protocols, education of the broader RT community (particularly in regards to MR safety) as well as the need to continue and support research, and development in this space. In response to this, an ad hoc committee of the American Association of Physicists in Medicine (AAPM) was formed to identify the unmet needs, roadblocks, and opportunities within this space. The purpose of this document is to report on the major findings and recommendations identified. Importantly, the provided recommendations represent the consensus opinions of the committee's membership, which were submitted in the committee's report to the AAPM Board of Directors. In addition, AAPM ad hoc committee reports differ from AAPM task group reports in that ad hoc committee reports are neither reviewed nor ultimately approved by the committee's parent groups, including at the council and executive committee level. Thus, the recommendations given in this summary should not be construed as being endorsed by or official recommendations from the AAPM.


Assuntos
Imageamento por Ressonância Magnética , Radioterapia Guiada por Imagem , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estados Unidos
7.
Med Phys ; 48(7): e671-e696, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33930183

RESUMO

BACKGROUND: Physicians use fixed C-arm fluoroscopy equipment with many interventional radiological and cardiological procedures. The associated effective dose to a patient is generally considered low risk, as the benefit-risk ratio is almost certainly highly favorable. However, X-ray-induced skin injuries may occur due to high absorbed patient skin doses from complex fluoroscopically guided interventions (FGI). Suitable action levels for patient-specific follow-up could improve the clinical practice. There is a need for a refined metric regarding follow-up of X-ray-induced patient injuries and the knowledge gap regarding skin dose-related patient information from fluoroscopy devices must be filled. The most useful metric to indicate a risk of erythema, epilation or greater skin injury that also includes actionable information is the peak skin dose, that is, the largest dose to a region of skin. MATERIALS AND METHODS: The report is based on a comprehensive review of best practices and methods to estimate peak skin dose found in the scientific literature and situates the importance of the Digital Imaging and Communication in Medicine (DICOM) standard detailing pertinent information contained in the Radiation Dose Structured Report (RDSR) and DICOM image headers for FGI devices. Furthermore, the expertise of the task group members and consultants have been used to bridge and discuss different methods and associated available DICOM information for peak skin dose estimation. RESULTS: The report contributes an extensive summary and discussion of the current state of the art in estimating peak skin dose with FGI procedures with regard to methodology and DICOM information. Improvements in skin dose estimation efforts with more refined DICOM information are suggested and discussed. CONCLUSIONS: The endeavor of skin dose estimation is greatly aided by the continuing efforts of the scientific medical physics community, the numerous technology enhancements, the dose-controlling features provided by the FGI device manufacturers, and the emergence and greater availability of the DICOM RDSR. Refined and new dosimetry systems continue to evolve and form the infrastructure for further improvements in accuracy. Dose-related content and information systems capable of handling big data are emerging for patient dose monitoring and quality assurance tools for large-scale multihospital enterprises.


Assuntos
Radiometria , Pele , Fluoroscopia , Humanos , Doses de Radiação , Radiografia Intervencionista , Radiologia Intervencionista
8.
AJR Am J Roentgenol ; 217(4): 883-887, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33236649

RESUMO

OBJECTIVE. To reduce staff exposure to infection and maintain operational efficiency, we have developed a protocol to image patients using portable chest radiography through the glass of an isolation room. This technique is safe and easy to implement. Images are of comparable quality to standard portable radiographs. CONCLUSION. This protocol, used routinely by our department during the COVID-19 pandemic, can be applied to any situation in which the patient is placed in isolation.


Assuntos
COVID-19/diagnóstico por imagem , Isolamento de Pacientes/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Radiografia Torácica/métodos , COVID-19/prevenção & controle , Humanos , Pulmão/diagnóstico por imagem , Pandemias , SARS-CoV-2
9.
CVIR Endovasc ; 3(1): 69, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32960372

RESUMO

PURPOSE: To quantify and categorize fluoroscopically-guided procedures with radiation doses exceeding 5000 mGy reference point air kerma (Ka,r). Ka,r > 5000 mGy has been defined as a "significant radiation dose" by the Society of Interventional Radiology. Identification and analysis of interventions with high radiation doses has the potential to reduce radiation-induced injuries. MATERIALS AND METHODS: Radiation dose data from a dose monitoring system for 19 interventional suites and 89,549 consecutive patient encounters from January 1, 2013 to August 1, 2019 at a single academic institution were reviewed. All patient encounters with Ka,r > 5000 mGy were included. All other encounters were excluded (n = 89,289). Patient demographics, medical specialty, intervention type, fluoroscopy time (minutes), dose area product (mGy·cm2), and Ka,r (mGy) were evaluated. RESULTS: There were 260 (0.3%) fluoroscopically-guided procedures with Ka,r > 5000 mGy. Of the 260 procedures which exceeded 5000 mGy, neurosurgery performed 81 (30.5%) procedures, followed by interventional radiology (n = 75; 28.2%), neurointerventional radiology (n = 55; 20.7%), and vascular surgery (n = 49; 18.4%). The procedures associated with the highest Ka,r were venous stent reconstruction performed by interventional radiology, arteriovenous malformation embolization performed by neurointerventional radiology, spinal hardware fixation by neurosurgery, and arterial interventions performed by vascular surgery. Neurointerventional radiology had the highest mean Ka,r (7,799 mGy), followed by neurosurgery (7452 mGy), vascular surgery (6849 mGy), and interventional radiology (6109 mGy). The mean Ka,r for interventional radiology performed procedures exceeding 5000 mGy was significantly lower than that for neurointerventional radiology, neurosurgery, and vascular surgery. CONCLUSIONS: Fluoroscopically-guided procedures with radiation dose exceeding 5000 mGy reference point air kerma are uncommon. The results of this study demonstrate that a large proportion of cases exceeding 5000 mGy were performed by non-radiologists, who likely do not receive the same training in radiation physics, radiation biology, and dose reduction techniques as radiologists.

10.
AJR Am J Roentgenol ; 213(5): 1100-1106, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31339351

RESUMO

OBJECTIVE. The purpose of this study was to devise a method for classification of individual chest and abdomen-pelvis CT doses for multiregion CT. MATERIALS AND METHODS. A retrospective analysis of volume CT dose index (CTDIvol) and dose-length product (DLP) associated with chest (150 adult patients), abdomen-pelvis (150 patients), and multiregion combined chest-abdomen-pelvis CT (210 patients; 60 single-run chest-abdomen-pelvis CT; 150 split-run with separate chest and abdomen-pelvis CT). All 510 CT examinations were performed with one of four MDCT scanners (64-, 64-, 128-, 256-MDCT). CTDIvol, DLP, and scan length were recorded. Scan lengths were obtained for these 510 CT examinations and for an additional 7745 examinations of patients at another institution. Data were analyzed by ANOVA and ROC analysis. RESULTS. The respective DLPs (chest, 258-381 mGy · cm; abdomen-pelvis, 360-433 mGy · cm; single-run chest-abdomen-pelvis, 595-636 mGy · cm) and scan lengths (chest, 31-33 cm; abdomen-pelvis, 45-46 cm; single-run chest-abdomen-pelvis, 63-65 cm) for chest, abdomen-pelvis, and multiregion combined chest-abdomen-pelvis CT were significantly different (p < 0.0001). For split-run, chest-abdomen-pelvis CT, scan lengths and dose indexes for individual body regions were not different from those of single-body-region CT (p > 0.05). ROC analysis of chest and abdomen examinations showed an ideal scan length threshold of 38 cm to differentiate abdomen-pelvis CT from chest CT with accuracy of 97.39% and an AUC of 0.9764. CONCLUSION. Despite interscanner variabilities in CT radiation doses, shorter scan length for chest than for abdomen-pelvis CT enables accurate binning of radiation doses for split-run combined chest-abdomen-pelvis CT.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Adulto , Feminino , Humanos , Masculino , Radiografia Abdominal , Radiografia Torácica , Estudos Retrospectivos , Tomógrafos Computadorizados
12.
Acad Radiol ; 26(2): 163-169, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29934019

RESUMO

RATIONALE AND OBJECTIVES: To assess the implementation of radiation dose monitoring software, create a process for clinical follow-up and documentation of high-dose cases, and quantify the number of patient reported radiation-induced tissue reactions in fluoroscopically guided interventional radiology (IR) and neuro-interventional radiology (NIR) procedures. MATERIALS AND METHODS: Web-based radiation dose monitoring software was installed at our institution and a process to flag all procedures with reference point air kerma (Ka,r) > 5000 mGy was implemented. The entrance skin dose was estimated and formal reports generated, allowing for physician-initiated clinical follow-up. To evaluate our process, we reviewed all IR and NIR procedures performed at our hospital over a 1-year period. For all procedures with Ka,r > 5000 mGy, retrospective medical chart review was performed to evaluate for patient reported tissue reactions. RESULTS: Three thousand five hundred eighty-two procedures were performed over the 1-year period. The software successfully transferred dose data on 3363 (93.9%) procedures. One thousand three hundred ninety-three (368 IR and 1025 NIR) procedures were further analyzed after excluding 2189 IR procedures with Ka,r < 2000 mGy. Ten of 368 (2.7%) IR and 52 of 1025 (5.1%) NIR procedures exceeded estimated skin doses of 5000 mGy. All 10 IR cases were abdominal/pelvic trauma angiograms with/without embolization; there were no reported tissue reactions. Of 52 NIR cases, 49 were interventions and 3 were diagnostic angiograms. Five of 49 (10.2%) NIR patients reported skin/hair injuries, all of which were temporary. CONCLUSION: Software monitoring and documentation of radiation dose in interventional procedures can be successfully implemented. Radiation-induced tissue reactions are relatively uncommon.


Assuntos
Doses de Radiação , Monitoramento de Radiação , Radiologia Intervencionista/métodos , Software , Assistência ao Convalescente/métodos , Feminino , Fluoroscopia/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Processos e Resultados em Cuidados de Saúde , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Monitoramento de Radiação/normas , Saúde Radiológica , Estudos Retrospectivos
14.
J Am Coll Radiol ; 15(12): 1738-1744, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30149951

RESUMO

MRI is a ubiquitous medical imaging technology typically using superconductivity to generate a strong, homogeneous, and generally ceaseless magnetic field. MRI and its magnetic field pose many safety hazards, including magnetic forces on metals, tissue heating and burns, nerve stimulation, bioeffects, acoustic noise, and contrast agent complications. The primary concern is that a wide variety of patients, staff members, technologists, and physicians can approach the incessant magnetic field, creating great potential for accidents that could occur if metals from the environment, adornments, implants, and other unintended sources are also present in or near the field. Many accidents have occurred and are occasionally reported in the United States and countries all over the world. Through carefully structured oversight and the establishment of strict guidelines regarding access, responsibilities, and training, these risks can be mitigated, and accidents can be prevented. Fortunately, there is currently a wide variety of resources available to facilitate the successful implementation of an effective MRI safety program. This article presents a general overview of and the authors' experience with an MRI safety program in terms of risk management and training. The MR safety program requirements and regulations in the United States devised by The Joint Commission and the ACR are also discussed. With these resources and a carefully selected team, the risk for MRI-related accidents can be vastly reduced if not completely eliminated.


Assuntos
Prevenção de Acidentes , Segurança de Equipamentos/normas , Imageamento por Ressonância Magnética/efeitos adversos , Segurança do Paciente/normas , Gestão de Riscos/métodos , Gestão da Segurança/normas , Meios de Contraste/efeitos adversos , Humanos , Joint Commission on Accreditation of Healthcare Organizations , Próteses e Implantes/efeitos adversos , Sociedades Médicas , Estados Unidos
15.
Radiology ; 289(2): 443-454, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30015591

RESUMO

Purpose To investigate performance in detectability of small (≤1 cm) low-contrast hypoattenuating focal lesions by using filtered back projection (FBP) and iterative reconstruction (IR) algorithms from two major CT vendors across a range of 11 radiation exposures. Materials and Methods A low-contrast detectability phantom consisting of 21 low-contrast hypoattenuating focal objects (seven sizes between 2.4 and 10.0 mm, three contrast levels) embedded into a liver-equivalent background was scanned at 11 radiation exposures (volume CT dose index range, 0.5-18.0 mGy; size-specific dose estimate [SSDE] range, 0.8-30.6 mGy) with four high-end CT platforms. Data sets were reconstructed by using FBP and varied strengths of image-based, model-based, and hybrid IRs. Sixteen observers evaluated all data sets for lesion detectability by using a two-alternative-forced-choice (2AFC) paradigm. Diagnostic performances were evaluated by calculating area under the receiver operating characteristic curve (AUC) and by performing noninferiority analyses. Results At benchmark exposure, FBP yielded a mean AUC of 0.79 ± 0.09 (standard deviation) across all platforms which, on average, was approximately 2% lower than that observed with the different IR algorithms, which showed an average AUC of 0.81 ± 0.09 (P = .12). Radiation decreases of 30%, 50%, and 80% resulted in similar declines of observer detectability with FBP (mean AUC decrease, -0.02 ± 0.05, -0.03 ± 0.05, and -0.05 ± 0.05, respectively) and all IR methods investigated (mean AUC decrease, -0.00 ± 0.05, -0.04 ± 0.05, and -0.04 ± 0.05, respectively). For each radiation level and CT platform, variance in performance across observers was greater than that across reconstruction algorithms (P = .03). Conclusion Iterative reconstruction algorithms have limited radiation optimization potential in detectability of small low-contrast hypoattenuating focal lesions. This task may be further complicated by a high degree of variation in radiologists' performances, seemingly exceeding real performance differences among reconstruction algorithms. © RSNA, 2018 Online supplemental material is available for this article.


Assuntos
Fígado/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Variações Dependentes do Observador , Imagens de Fantasmas , Doses de Radiação , Reprodutibilidade dos Testes
18.
Retin Cases Brief Rep ; 12(4): 346-348, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28792916

RESUMO

PURPOSE: To describe a case of left eye corneal perforation, cataract, hyphema, and intraocular foreign body after airsoft pellet injury. METHODS: The authors reviewed the medical history and diagnostic imaging of a 12-year-old boy injured by a pellet from an airsoft gun. Typically, plastic airsoft pellets cause blunt trauma to the globe, which can lead to visual disability from corneal abrasion or hyphema. Initial computed tomography of the left orbit showed a 6.1 mm × 7.6-mm radiodense foreign body with beam-hardening artifact, a radiographic feature associated with metallic objects. RESULTS: The patient was taken to the operating room for globe repair, lensectomy, vitrectomy, and removal of intraocular foreign body. The removed foreign body was a plastic airsoft pellet. CONCLUSION: This is the first report of a plastic intraocular foreign body showing beam-hardening artifact. This finding may have implications in the diagnosis and management of retained intraocular or intraorbital plastic foreign bodies.


Assuntos
Corpos Estranhos no Olho/diagnóstico por imagem , Ferimentos Oculares Penetrantes/diagnóstico por imagem , Plásticos , Tomografia Computadorizada por Raios X , Ferimentos por Arma de Fogo/diagnóstico por imagem , Criança , Humanos , Masculino
19.
Cardiovasc Intervent Radiol ; 40(10): 1593-1599, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28497188

RESUMO

PURPOSE: To compare technical success, clinical success, complications, radiation dose, and total room utilization time for osteoid osteoma thermal (radiofrequency or microwave) ablation using cone-beam computed tomography (CBCT) with two-axis fluoroscopic navigational overlay versus conventional computed tomography (CT) guidance. MATERIALS AND METHODS: A retrospective review was performed to identify all osteoid osteoma ablations performed over a 5.5-year period at a single tertiary care pediatric hospital. Twenty-five ablations (15 radiofrequency and 10 microwave) in 23 patients undergoing fluoroscopic CBCT-guided osteoid osteoma ablation were compared to 35 ablations (35 radiofrequency) in 32 patients undergoing ablation via conventional CT guidance. Dose area product and dose length product were recorded for CBCT and conventional CT, respectively, and converted to effective doses. Technical success, clinical success (cessation of pain and medication use 1 month after ablation), complications, radiation dose, and total room utilization time were compared. RESULTS: All procedures were technically successful. Twenty-two of 25 (88.0%) CBCT and 31 of 35 (88.6%) conventional CT-guided ablations achieved immediate clinical success. There were two minor complications in each group and no major complications. Mean effective radiation dose was significantly lower for CBCT compared to CT guidance (0.12 vs. 0.39 mSv, p = 0.02). Mean total room utilization time for CBCT was longer (133.5 vs. 97.5 min, p = 0.0001). CONCLUSIONS: Fluoroscopic CBCT guidance for percutaneous osteoid osteoma ablation yields similar technical and clinical success, reduced radiation dose, and increased total room utilization time compared to conventional CT guidance.


Assuntos
Neoplasias Ósseas/cirurgia , Ablação por Cateter/métodos , Osteoma Osteoide/cirurgia , Radiografia Intervencionista/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Neoplasias Ósseas/diagnóstico por imagem , Criança , Pré-Escolar , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Fluoroscopia/métodos , Humanos , Masculino , Osteoma Osteoide/diagnóstico por imagem , Pediatria/métodos , Estudos Retrospectivos , Adulto Jovem
20.
Radiology ; 284(1): 120-133, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28221093

RESUMO

Purpose To develop diagnostic reference levels (DRLs) and achievable doses (ADs) for the 10 most common adult computed tomographic (CT) examinations in the United States as a function of patient size by using the CT Dose Index Registry. Materials and Methods Data from the 10 most commonly performed adult CT head, neck, and body examinations from 583 facilities were analyzed. For head examinations, the lateral thickness was used as an indicator of patient size; for neck and body examinations, water-equivalent diameter was used. Data from 1 310 727 examinations (analyzed by using SAS 9.3) provided median values, as well as means and 25th and 75th (DRL) percentiles for volume CT dose index (CTDIvol), dose-length product (DLP), and size-specific dose estimate (SSDE). Applicable results were compared with DRLs from eight countries. Results More than 46% of the facilities were community hospitals; 13% were academic facilities. More than 48% were in metropolitan areas, 39% were suburban, and 13% were rural. More than 50% of the facilities performed fewer than 500 examinations per month. The abdomen and pelvis was the most frequently performed examination in the study (45%). For body examinations, DRLs (75th percentile) and ADs (median) for CTDIvol, SSDE, and DLP increased consistently with the patient's size (water-equivalent diameter). The relationships between patient size and DRLs and ADs were not as strong for head and neck examinations. These results agree well with the data from other countries. Conclusion DRLs and ADs as a function of patient size were developed for the 10 most common adult CT examinations performed in the United States. © RSNA, 2017.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X , Adulto , Meios de Contraste , Feminino , Humanos , Masculino , Imagens de Fantasmas , Valores de Referência , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...