Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914715

RESUMO

Aggressive natural killer cell leukemia (ANKL) is a rare hematological malignancy with a fulminant clinical course. Our previous study revealed that ANKL cells proliferate predominantly in the liver sinusoids and strongly depend on transferrin supplementation. In addition, we demonstrated that liver-resident ANKL cells are sensitive to PPMX-T003, an anti-human transferrin receptor 1 inhibitory antibody, whereas spleen-resident ANKL cells are resistant to transferrin receptor 1 inhibition. However, the microenvironmental factors that regulate the iron dependency of ANKL cells remain unclear. In this study, we first revealed that the anti-neoplastic effect of PPMX-T003 was characterized by DNA double-strand breaks in a DNA replication-dependent manner, similar to conventional cytotoxic agents. We also found that the influx of extracellular amino acids via LAT1 stimulated sensitivity to PPMX-T003. Taken together, we discovered that the amount of extracellular amino acid influx through LAT1 was the key environmental factor determining the iron dependency of ANKL cells via adjustment of their mTOR/Myc activity, which provides a good explanation for the different sensitivity to PPMX-T003 between liver- and spleen-resident ANKL cells, as the liver sinusoid contains abundant amino acids absorbed from the gut.

2.
Mol Biol Rep ; 50(7): 6005-6017, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273064

RESUMO

BACKGROUND: Family with sequence similarity 134, member B (FAM134B), also known as Reticulophagy regulator 1 (RETREG1), is an ER-phagy receptor involved in ER homeostasis. Congenital mutations in the FAM134B gene have been reported to be associated with hereditary sensory and autonomic neuropathy type 2B (HSAN2B); however, the molecular differences between wild-type and HSAN2B-linked FAM134B are not fully understood. METHODS AND RESULTS: We prepared several human FAM134B constructs, such as the HSAN2B-linked mutant, and compared their features with those of wild-type FAM134B by transfecting these constructs into FAM134B-deficient Neuro2a cells. Although intrinsic FAM134B protein expression in wild-type Neuro2a cells was affected by the supply of amino acids in the culture medium, the expression of each HSAN2B-linked mutant FAM134B protein was hardly affected by serum and amino acid deprivation. On the other hand, the intracellular localization of GFP-tagged HSAN2B-linked mutants, except for P7Gfs133X, overlapped well with ER-localized SP-RFPKDEL and did not differ from that of GFP-tagged wild-type FAM134B. However, analysis of protein‒protein interactions using the NanoBiT reporter assay revealed the difference between wild-type and C-terminal truncated mutant FAM134B. Furthermore, this NanoBiT assay demonstrated that both wild-type and G216R FAM134B interacted with LC3/GABARAPL1 to the same extent, but the FAM134B construct with mutations near the LC3-interacting region (LIR) did not. Similar to the NanoBiT assay, the C-terminal-truncated FAM134B showed lower ER-phagy activities, as assessed by the cotransfection of GFP-tagged reporters. CONCLUSIONS: We showed that wild-type and HSAN2B-linked FAM134B have different molecular characteristics by transfecting cells with various types of constructs. Thus, this study provides new insights into the molecular mechanisms underlying HSAN2B as well as the regulation of ER-phagy.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Peptídeos e Proteínas de Sinalização Intracelular , Humanos , Autofagia/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Oncogene ; 39(39): 6218-6230, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32826949

RESUMO

Pancreatic cancer is one of the most fatal cancers without druggable molecular targets. Hypoxia inducible factor-1 (HIF-1) is a heterodimeric transcriptional factor that promotes malignancy in various cancers including pancreatic cancer. Herein, we found that HIF-1 is accumulated in normoxic or moderate hypoxic areas of pancreatic cancer xenografts in vivo and is active even during normoxia in pancreatic cancer cells in vitro. This prompted us to analyze whether the HIF-1 activator Mint3 contributes to malignant features of pancreatic cancer. Mint3 depletion by shRNAs attenuated HIF-1 activity during normoxia and cell proliferation concomitantly with accumulated p21 and p27 protein in pancreatic cancer cells. Further analyses revealed that Mint3 increased transcription of the oncogenic ubiquitin ligase SKP2 in pancreatic cancer cells via HIF-1. This Mint3-HIF-1-SKP2 axis also promoted partial epithelial-mesenchymal transition, stemness features, and chemoresistance in pancreatic cancer cells. Even in vivo, Mint3 depletion attenuated tumor growth of orthotopically inoculated human pancreatic cancer AsPC-1 cells. Database and tissue microarray analyses showed that Mint3 expression is correlated with SKP2 expression in human pancreatic cancer specimens and high Mint3 expression is correlated with poor prognosis of pancreatic cancer patients. Thus, targeting Mint3 may be useful for attenuating the malignant features of pancreatic cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Quinases Associadas a Fase S/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Proliferação de Células/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo
4.
Sci Rep ; 10(1): 9275, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518284

RESUMO

Cancer cells adapt to various stress conditions by optimizing gene expression profiles via transcriptional and translational regulation. However, whether and how EXOSC9, a component of the RNA exosome complex, regulates adaptation to stress conditions and tumorigenicity in cancer cells remain unclear. Here, we examined the effects of EXOSC9 depletion on cancer cell growth under various stress conditions. EXOSC9 depletion attenuated growth and survival under various stress conditions in cancer cells. Interestingly, this also decreased the number of P-bodies, which are messenger ribonucleoprotein particles (mRNPs) required for stress adaptation. Meanwhile, EXOSC2/EXOSC4 depletion also attenuated P-body formation and stress resistance with decreased EXOSC9 protein. EXOSC9-mediated stress resistance and P-body formation were found to depend on the intact RNA-binding motif of this protein. Further, RNA-seq analyses identified 343 EXOSC9-target genes, among which, APOBEC3G contributed to defects in stress resistance and P-body formation in MDA-MB-231 cells. Finally, EXOSC9 also promoted xenografted tumor growth of MDA-MB-231 cells in an intact RNA-binding motif-dependent manner. Database analyses further showed that higher EXOSC9 activity, estimated based on the expression of 343 target genes, was correlated with poorer prognosis in some cancer patients. Thus, drugs targeting activity of the RNA exosome complex or EXOSC9 might be useful for cancer treatment.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico/fisiologia , Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Estruturas Citoplasmáticas/metabolismo , Dano ao DNA , Estresse do Retículo Endoplasmático , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Exossomos/metabolismo , Feminino , Humanos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Proteínas de Ligação a RNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Discov ; 2: 16019, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462466

RESUMO

Loss of anchorage to the extracellular matrix leads to apoptosis (anoikis) in normal cells, but cancerous cells are usually resistant to such stress. Here we report the pivotal role of an E3 ubiquitin ligase, ring-finger protein 126 (RNF126), in the resistance of cancer cells to the stress associated with non-adherent conditions. Non-adherent cancer cells exhibited increased flux through the tricarboxylic acid cycle via increased conversion of pyruvate to acetyl-CoA. RNF126 was found to act as a ubiquitin ligase for pyruvate dehydrogenase kinases (PDKs), resulting in their proteasomal degradation. This decrease in PDK levels allowed pyruvate dehydrogenases to catalyze the conversion of pyruvate to acetyl-CoA. Moreover, depletion of RNF126 or increased expression of PDK1 in cancer cells suppressed colony formation in soft agar as well as tumorigenicity in mice. RNF126 expression in cancer cells was found to be under the control of the extracellular signal-regulated kinase signaling pathway, which is essential for anoikis resistance. Thus, RNF126 is an attractive molecule for treating cancer by selectively targeting anchorage-independent growth.

6.
Sci Rep ; 6: 22784, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26948053

RESUMO

Unlike most cells, cancer cells activate hypoxia inducible factor-1 (HIF-1) to use glycolysis even at normal oxygen levels, or normoxia. Therefore, HIF-1 is an attractive target in cancer therapy. However, the regulation of HIF-1 during normoxia is not well characterised, although Mint3 was recently found to activate HIF-1 in cancer cells and macrophages by suppressing the HIF-1 inhibitor, factor inhibiting HIF-1 (FIH-1). In this study, we analysed Mint3-binding proteins to investigate the mechanism by which Mint3 regulates HIF-1. Yeast two-hybrid screening using Mint3 as bait identified N-terminal EF-hand calcium binding protein 3 (NECAB3) as a novel factor regulating HIF-1 activity via Mint3. NECAB3 bound to the phosphotyrosine-binding domain of Mint3, formed a ternary complex with Mint3 and FIH-1, and co-localised with Mint3 at the Golgi apparatus. Depletion of NECAB3 decreased the expression of HIF-1 target genes and reduced glycolysis in normoxic cancer cells. NECAB3 mutants that binds Mint3 but lacks an intact monooxygenase domain also inhibited HIF-1 activation. Inhibition of NECAB3 in cancer cells by either expressing shRNAs or generating a dominant negative mutant reduced tumourigenicity. Taken together, the data indicate that NECAB3 is a promising new target for cancer therapy.


Assuntos
Carcinogênese/metabolismo , Proteínas de Transporte/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sítios de Ligação , Proteínas de Ligação ao Cálcio , Carcinogênese/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Glicólise , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Fatores de Complexo Ternário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...