Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(3): e1011848, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489379

RESUMO

The recent advancements in large-scale activity imaging of neuronal ensembles offer valuable opportunities to comprehend the process involved in generating brain activity patterns and understanding how information is transmitted between neurons or neuronal ensembles. However, existing methodologies for extracting the underlying properties that generate overall dynamics are still limited. In this study, we applied previously unexplored methodologies to analyze time-lapse 3D imaging (4D imaging) data of head neurons of the nematode Caenorhabditis elegans. By combining time-delay embedding with the independent component analysis, we successfully decomposed whole-brain activities into a small number of component dynamics. Through the integration of results from multiple samples, we extracted common dynamics from neuronal activities that exhibit apparent divergence across different animals. Notably, while several components show common cooperativity across samples, some component pairs exhibited distinct relationships between individual samples. We further developed time series prediction models of synaptic communications. By combining dimension reduction using the general framework, gradient kernel dimension reduction, and probabilistic modeling, the overall relationships of neural activities were incorporated. By this approach, the stochastic but coordinated dynamics were reproduced in the simulated whole-brain neural network. We found that noise in the nervous system is crucial for generating realistic whole-brain dynamics. Furthermore, by evaluating synaptic interaction properties in the models, strong interactions within the core neural circuit, variable sensory transmission and importance of gap junctions were inferred. Virtual optogenetics can be also performed using the model. These analyses provide a solid foundation for understanding information flow in real neural networks.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Neurônios , Animais , Neurônios/fisiologia , Encéfalo/diagnóstico por imagem , Junções Comunicantes/fisiologia , Caenorhabditis elegans/fisiologia , Neuroimagem , Modelos Neurológicos
2.
BMC Bioinformatics ; 24(1): 254, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328814

RESUMO

BACKGROUND: In the field of neuroscience, neural modules and circuits that control biological functions have been found throughout entire neural networks. Correlations in neural activity can be used to identify such neural modules. Recent technological advances enable us to measure whole-brain neural activity with single-cell resolution in several species including [Formula: see text]. Because current neural activity data in C. elegans contain many missing data points, it is necessary to merge results from as many animals as possible to obtain more reliable functional modules. RESULTS: In this work, we developed a new time-series clustering method, WormTensor, to identify functional modules using whole-brain activity data from C. elegans. WormTensor uses a distance measure, modified shape-based distance to account for the lags and the mutual inhibition of cell-cell interactions and applies the tensor decomposition algorithm multi-view clustering based on matrix integration using the higher orthogonal iteration of tensors (HOOI) algorithm (MC-MI-HOOI), which can estimate both the weight to account for the reliability of data from each animal and the clusters that are common across animals. CONCLUSION: We applied the method to 24 individual C. elegans and successfully found some known functional modules. Compared with a widely used consensus clustering method to aggregate multiple clustering results, WormTensor showed higher silhouette coefficients. Our simulation also showed that WormTensor is robust to contamination from noisy data. WormTensor is freely available as an R/CRAN package https://cran.r-project.org/web/packages/WormTensor .


Assuntos
Encéfalo , Caenorhabditis elegans , Animais , Reprodutibilidade dos Testes , Algoritmos , Análise por Conglomerados
3.
BMC Biol ; 18(1): 30, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32188430

RESUMO

BACKGROUND: Annotation of cell identity is an essential process in neuroscience that allows comparison of cells, including that of neural activities across different animals. In Caenorhabditis elegans, although unique identities have been assigned to all neurons, the number of annotatable neurons in an intact animal has been limited due to the lack of quantitative information on the location and identity of neurons. RESULTS: Here, we present a dataset that facilitates the annotation of neuronal identities, and demonstrate its application in a comprehensive analysis of whole-brain imaging. We systematically identified neurons in the head region of 311 adult worms using 35 cell-specific promoters and created a dataset of the expression patterns and the positions of the neurons. We found large positional variations that illustrated the difficulty of the annotation task. We investigated multiple combinations of cell-specific promoters driving distinct fluorescence and generated optimal strains for the annotation of most head neurons in an animal. We also developed an automatic annotation method with human interaction functionality that facilitates annotations needed for whole-brain imaging. CONCLUSION: Our neuron ID dataset and optimal fluorescent strains enable the annotation of most neurons in the head region of adult C. elegans, both in full-automated fashion and a semi-automated version that includes human interaction functionalities. Our method can potentially be applied to model species used in research other than C. elegans, where the number of available cell-type-specific promoters and their variety will be an important consideration.


Assuntos
Encéfalo/fisiologia , Caenorhabditis elegans/fisiologia , Neurônios/fisiologia , Animais , Conjuntos de Dados como Assunto
4.
PLoS Comput Biol ; 12(6): e1004970, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27271939

RESUMO

To measure the activity of neurons using whole-brain activity imaging, precise detection of each neuron or its nucleus is required. In the head region of the nematode C. elegans, the neuronal cell bodies are distributed densely in three-dimensional (3D) space. However, no existing computational methods of image analysis can separate them with sufficient accuracy. Here we propose a highly accurate segmentation method based on the curvatures of the iso-intensity surfaces. To obtain accurate positions of nuclei, we also developed a new procedure for least squares fitting with a Gaussian mixture model. Combining these methods enables accurate detection of densely distributed cell nuclei in a 3D space. The proposed method was implemented as a graphical user interface program that allows visualization and correction of the results of automatic detection. Additionally, the proposed method was applied to time-lapse 3D calcium imaging data, and most of the nuclei in the images were successfully tracked and measured.


Assuntos
Núcleo Celular/fisiologia , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Biologia Computacional , Bases de Dados Factuais , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...