Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 133: 126-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25819460

RESUMO

The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins' tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Retina/metabolismo , Tirosina/análogos & derivados , Animais , Humanos , Estrutura Molecular , Tirosina/fisiologia
2.
Cell Mol Neurobiol ; 35(2): 197-204, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25212825

RESUMO

Docosahexaenoic acid (DHA), an omega-3 fatty acid family member, is obtained by diet or synthesized from dietary essential omega-3 linolenic acid and delivered systemically to the choriocapillaris, from where it is taken up by the retinal pigment epithelium (RPE). DHA is then transported to the inner segments of photoreceptors, where it is incorporated in phospholipids during the biogenesis of outer segment disk and plasma membranes. As apical photoreceptor disks are gradually shed and phagocytized by the RPE, DHA is retrieved and recycled back to photoreceptor inner segments for reassembly into new disks. Under uncompensated oxidative stress, the docosanoid neuroprotectin D1 (NPD1), a potent mediator derived from DHA, is formed by the RPE and displays its bioactivity in an autocrine and paracrine fashion. The purpose of this study was to determine whether photoreceptors have the ability to synthesize NPD1, and whether or not this lipid mediator exerts bioactivity on these cells. For this purpose, 661W cells (mouse-derived photoreceptor cells) were used. First we asked whether these cells have the ability to form NPD1 by incubating cells with deuterium (d4)-labeled DHA exposed to dark and bright light treatments, followed by LC-MS/MS-based lipidomic analysis to identify and quantify d4-NPD1. The second question pertains to the potential bioactivity of these lipids. Therefore, cells were incubated with 9-cis-retinal in the presence of bright light that triggers cell damage and death. Following 9-cis-retinal loading, DHA, NPD1, or vehicle were added to the media and the 661W cells maintained either in darkness or under bright light. DHA and NPD1 were then quantified in cells and media. Regardless of lighting conditions, 661W cells acquired DHA from the media and synthesized 4-9 times as much d4-NPD1 under bright light treatment in the absence and presence of 9-cis-retinal compared to cells in darkness. Viability assays of 9-cis-retinal-treated cells demonstrated that 34 % of the cells survived without DHA or NPD1. However, after bright light exposure, DHA protected 23 % above control levels and NPD1 increased protection by 32 %. In conclusion, the photoreceptor cell line 661W has the capability to synthesize NPD1 from DHA when under stress, and, in turn, can be protected from stress-induced apoptosis by DHA or NPD1, indicating that photoreceptors effectively contribute to endogenous protective signaling mediated by NPD1 under stressful conditions.


Assuntos
Citoproteção/efeitos da radiação , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Docosa-Hexaenoicos/farmacologia , Luz , Estresse Oxidativo/efeitos da radiação , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Linhagem Celular , Citoproteção/efeitos dos fármacos , Diterpenos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Retinaldeído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...