Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biosci ; 37(1): 16-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641833

RESUMO

OBJECTIVE: The objective of this study was to investigate the effect of heat stress on the growth traits and genetic parameters of Thai native chickens. METHODS: A total of 16,487 records for growth traits of Thai native chickens between 2017 and 2022 were used in this study. Data included the body weight at birth, body weight at 4, 8, and 12 weeks of age (BW0, BW4, BW8, BW12), average daily gain during 0 to 4, 4 to 8, and 8 to 12 weeks of age (ADG0-4, ADG4-8, ADG8-12), absolute growth rate at birth, at 4, 8, and 12 weeks of age (AGR0, AGR4, AGR8, AGR12). The repeatability test day model used the reaction-norm procedure to analyze the threshold point of heat stress, rate of decline of growth traits, and genetic parameters. RESULTS: At temperature and humidity index (THI) of 76, Thai native chickens began to lose their growth traits, which was the onset of heat stress in this study. The estimated heritability, genetic correlation between animal and heat stress effect, and correlations between the intercept and slope of the permanent environmental effects were 0.27, -0.85, and -0.83 for BW, 0.17, -0.81, and -0.95 for ADG, 0.25, -0.61, and -0.83 for AGR, respectively. Male chickens are more affected by heat stress than female chickens with a greater reduction of BW, ADG, and AGR, values equal to -9.30, -0.23, -15.21 (in males) and -6.04, -0.21, -10.10 (in females) gram per 1 level increase of THI from the THI of 76. CONCLUSION: The influence of thermal stress had a strong effect on the decline in growth traits and genetic parameters in Thai native chickens. This study indicated that genetic models used in conjunction with THI data are an effective method for the analysis and assessment of the effects of heat stress on the growth traits and genetics of native chickens.

2.
Animals (Basel) ; 13(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37370522

RESUMO

Toll-like receptors (TLRs) are transmembrane proteins important for directing immune responses. Their primary role is to recognize pathogens based on single-nucleotide polymorphism (SNP) characteristics. TLR2 is categorized as a pattern recognition receptor (PRR) that is important for the recognition of pathogens. Nucleotide variation in the coding region determines the conformation of the TLR protein, affecting its protein domain efficiency. This study aimed to identify SNPs in the coding region of TLR2 to enhance available genetic tools for improving health and production in swamp buffalo. A total of 50 buffaloes were randomly sampled from the northeastern part of Thailand for genomic DNA extraction and sequencing. Nucleotide sequences were aligned and compared with cattle and river buffalo based on the database. The results showed, there were 29 SNP locations in swamp buffalo and 14 different locations in both cattle and buffaloes. Haplotype analysis revealed that 27 haplotypes occurred. Swamp buffalo were identified from 13 SNPs based on biallelic analysis, which found eight synonymous and five nonsynonymous SNPs. Nucleotide diversity (π) was 0.16, indicating genetic diversity. Genetic diversity (haplotype diversity; HD) was high at 0.99 ± 0.04. This indicates a high probability that the two sample haplotypes are different. The π and HD values are important indicators of the genetic diversity of the swamp buffalo population. In summary, the Thai swamp buffalo population detected a polymorphism of the coding region of the TRL2 gene. Therefore, further, in-depth study of the relationship between these genes in the immune system and disease resistance should be recommended.

3.
Vet Sci ; 8(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34941825

RESUMO

Heat stress is becoming a major problem because it limits growth in poultry production, especially in tropical areas. The development of genetic lines of Thai native chickens (TNC) which can tolerate the tropical climate with the least compromise on growth performance is therefore necessary. This research aims to analyze the appropriate growth curve function and to estimate the effect of heat stress on the genetic absolute growth rate (AGR) in TNC and Thai synthetic chickens (TSC). The data comprised 35,355 records for body weight from hatching to slaughtering weight of 7241 TNC and 10,220 records of 2022 TSC. The best-fitting growth curve was investigated from three nonlinear regression models (von Bertalanffy, Gompertz, and logistic) and used to analyze the individual AGR. In addition, a repeatability test-day model on the temperature-humidity index (THI) function was used to estimate the genetic parameters for heat stress. The Gompertz function produced the lowest mean squared error (MSE) and Akaike information criterion (AIC) and highest the pseudo-coefficient of determination (Pseudo-R2) in both chicken breeds. The growth rates in TSC were higher than TNC; the growth rates of males were greater than females, but the age at inflection point in females was lower than in males in both chicken breeds. The THI threshold started at 76. The heritability of the AGR was 0.23 and 0.18 in TNC and TSC, respectively. The additive variance and permanent environmental variance of the heat stress effect increased sharply after the THI of 76. The growth rate decreased more severely in TSC than TNC. In conclusion, the Gompertz function can be applied with the THI to evaluate genetic performance for heat tolerance and increase growth performance in slow-growing chicken.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...