Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 13(7): 847-852, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38916259

RESUMO

The strain dependence of the Johari-Goldstein (JG)-ß relaxation time, as well as the directional dependence, was systematically investigated for stretched cross-linked polybutadiene using time-domain interferometry. We found that the strain dependence of the JG-ß relaxation time is directionally dependent, contrary to expectation: the relaxation time of the JG-ß motion, whose displacement is perpendicular to the stretching direction, decreases with stretching, whereas the relaxation time of the parallel JG-ß motion changes little. This result is distinct from the previously reported strain dependence of the α relaxation time, where the relaxation time increases isotropically with stretching. Thus, the difference in the strain dependence of the relaxation time between the α and JG-ß processes suggests a microscopic origin and requires the modification of the conventional dynamic picture for stretched polymers.

2.
Sci Rep ; 13(1): 11759, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474600

RESUMO

The combination of laser irradiation heating and synchrotron X-ray sources has made it possible to observe the fiber-structure development that occurs at sub-millisecond timescales after necking during continuous drawing. Through wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) analysis of poly(ethylene terephthalate) fibers of three different molecular weights drawn under equivalent stresses, a good correlation was observed between the d-spacing of smectic (001') diffraction extrapolated to the necking point and the strength of the drawn fiber. This indicates that the molecular chains that bear the drawing stress also bear most of the applied stress during tensile testing of the resultant fiber. In addition, considering the drawing-stress dependence of the d-spacing and the molecular weight distribution of the fiber revealed that molecular chains with molecular weights over 23,000 g/mol bear the majority of tensile force applied to the fiber.

3.
Sci Rep ; 13(1): 5805, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037865

RESUMO

Notwithstanding the various uses of rubber, the fracture mechanism of filler-reinforced rubber remains unclear. This study used four-dimensional computed tomography (4D-CT) involving monochromatic synchrotron X-rays to examine the cavitation within silica-reinforced rubber quantitatively and systematically. The results suggested a threshold value of silica content for the cavitation morphology. Macroscopic fractures, such as those developed by void formation, occurred below the threshold value of silica content. Above this threshold, the density of rubber decreased but macroscopic voids rarely occurred. The lower-density rubber area in the high-silica-content rubber was reversible at the effective pixel size for 4D-CT. These results suggest that the growth of the damage points to macrosized voids could be stopped by the formation of a network of rigid polymer layers. This study allows the elucidation of the reinforcing mechanism and the cavitation morphology of filler-reinforced rubber.

4.
J Synchrotron Radiat ; 29(Pt 5): 1180-1186, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073876

RESUMO

A synchrotron-radiation-based quasi-elastic γ-ray scattering system has been developed that uses time-domain interferometry to observe microscopic polymer dynamics under uniaxial deformation. The stress-producing mechanism of crosslinked polybutadiene has been studied from a microscopic viewpoint. It was found that the mean relaxation time ⟨τ⟩ of the microscopic polymer motion observed over a relatively high temperature (T) range (i.e. T-1 < 0.0045 K-1) increased with elongation on both the intra- and intermolecular scales. Following an extensive strain dependence study, it was found that the strain dependences of both the intra- and intermolecular ⟨τ⟩ changed with the stress dependence. It was therefore suggested that ⟨τ⟩ increased due to the constraint of the local polymer chain motion caused by elongation. The local molecular dynamics of polymer chains under uniaxial deformation could be evaluated at intra- and intermolecular scales separately for the first time using our method.

5.
ACS Omega ; 6(23): 15257-15263, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34151104

RESUMO

The ionomers distributed on carbon particles in the catalyst layer of polymer electrolyte fuel cells (PEFCs) govern electrical power via proton transport and oxygen permeation to active platinum. Thus, ionomer distribution is a key to PEFC performance. This distribution is characterized by ionomer adsorption and deposition onto carbon during the catalyst-ink coating process; however, the adsorbed and deposited ionomers cannot easily be distinguished in the catalyst layer. Therefore, we identified these two types of ionomers based on the positional correlation between the ionomer and carbon particles. The cross-correlation function for the catalyst layer was obtained by small-angle neutron scattering measurements with varying contrast. From fitting with a model for a fractal aggregate of polydisperse core-shell spheres, we determined the adsorbed-ionomer thickness on the carbon particle to be 51 Å and the deposited-ionomer amount for the total ionomer to be 50%. Our technique for ionomer differentiation can be used to optimally design PEFC catalyst layers.

6.
Langmuir ; 36(43): 12830-12837, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33085483

RESUMO

We performed H2O and D2O double-contrast neutron reflectivity measurements on ∼25 nm thick Nafion thin films on hydrophilic and hydrophobic carbon in water and 80% relative humidity vapor to investigate the depth profile of the water and Nafion distribution. We found a dense Nafion layer at the air or water interface regardless of the carbon hydrophilicity. On the other hand, a water-rich Nafion dense layer was observed at the carbon interface only for hydrophilic carbon. The double-contrast measurements provided quantitative information about the depth profile but simultaneously indicated that the sum of the volume occupancies of water and Nafion in the film was less than unity. We assessed the problem based on two possibilities: voids in the film or "residual water", which cannot be exchanged or is difficult to exchange with water outside.

7.
Langmuir ; 36(13): 3415-3424, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32176499

RESUMO

We investigated in detail the structures in the poly(vinyl alcohol) (PVA) adsorption layers on a Si substrate, which remained on the substrate after immersing the relatively thick 30-50 nm films in hot water, by neutron reflectometry under humid conditions. For the PVA with a degree of saponification exceeding 98 mol %, the adsorption layer exhibits a three-layered structure in the thickness direction. The bottom layer is considered to be the so-called inner adsorption layer that is not fully swollen with water vapor. This may be because the polymer chains in the inner adsorption layer are strongly constrained onto the substrate, which inhibits water vapor penetration. The polymer chains in this layer have many contact points to the substrate via the hydrogen bonding between the hydroxyl groups in the polymer chain and the silanol groups on the surface of the Si substrate and consequently exhibit extremely slow dynamics. Therefore, it is inferred that the bottom layer is fully amorphous. Furthermore, we consider the middle layer to be somewhat amorphous because parts of the molecular chains are pinned below the interface between the middle and bottom layers. The molecular chains in the top layer become more mobile and ordered, owing to the large distance from the strongly constrained bottom layer; therefore, they exhibit a much lower degree of swelling compared to the middle amorphous layer. Meanwhile, for the PVA with a much lower degree of saponification, the adsorption layer structure consists of the two-layers. The bottom layer forms the inner adsorption layer that moderately swells with water vapor because the polymer chains have few contact points to the substrate. The molecular chains in the middle layer, therefore, are somewhat crystallizable because of this weak constraint.

8.
Langmuir ; 35(34): 11099-11107, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31365260

RESUMO

We investigated the swelling behaviors of poly(vinyl alcohol) (PVA) films deposited on Si wafers with water vapor, which is a good solvent for PVA for elucidating structural and dynamical heterogeneities in the film thickness direction. Using deuterated water vapor, structural and dynamical differences in the thickness direction can be detected easily as different degrees of swelling in the thickness direction by neutron reflectivity. Consequently, the PVA film with a degree of saponification exceeding 98 mol % exhibits a three-layered structure in the thickness direction. It is considered that an adsorption layer consisting of molecular chains that are strongly adsorbed onto the solid substrate is formed at the interface with the substrate, which is not swollen with water vapor compared with the bulk-like layer above it. The adsorption layer is considered to exhibit significantly slower dynamics than the bulk. Furthermore, a surface layer that swells excessively compared with the underneath bulk-like layer is found. This excess swelling of the surface layer may be related to a higher mobility of the molecular chains or lower crystallinity at the surface region compared to the underneath bulk-like layer. Meanwhile, for the PVA film with a much lower degree of saponification, a thin layer with a slightly lower degree of swelling than the bulk-like layer above it can be detected at the interface between the film and substrate only under a high humidity condition. This layer is considered to be the adsorption layer composed of molecular chains loosely adsorbed onto the Si substrate.

9.
Phys Chem Chem Phys ; 21(32): 17512-17516, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304942

RESUMO

We combined the deuterium labeling and neutron reflectivity techniques to determine the fine structure of the electric double layer structure in an imidazolium ionic liquid (IL). For this, a simple and large scale deuteration method for imidazolium ILs was developed, where the deuteration level can be systematically controlled.

10.
J Chem Phys ; 148(12): 124902, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604836

RESUMO

Using ultra-small angle X-ray scattering (USAXS), we analyzed the higher-order structures of nanoparticles with a concentrated brush of an ionic liquid (IL)-type polymer (concentrated-polymer-brush-modified silica particle; PSiP) in an IL and the structure of the swollen shell layer of PSiP. Homogeneous mixtures of PSiP and IL were successfully prepared by the solvent-casting method involving the slow evaporation of a volatile solvent, which enabled a systematic study over an exceptionally wide range of compositions. Different diffraction patterns as a function of PSiP concentration were observed in the USAXS images of the mixtures. At suitably low PSiP concentrations, the USAXS intensity profile was analyzed using the Percus-Yevick model by matching the contrast between the shell layer and IL, and the swollen structure of the shell and "effective diameter" of the PSiP were evaluated. This result confirms that under sufficiently low pressures below and near the liquid/crystal-threshold concentration, the studied PSiP can be well described using the "hard sphere" model in colloidal science. Above the threshold concentration, the PSiP forms higher-order structures. The analysis of diffraction patterns revealed structural changes from disorder to random hexagonal-closed-packing and then face-centered-cubic as the PSiP concentration increased. These results are discussed in terms of thermodynamically stable "hard" and/or "semi-soft" colloidal crystals, wherein the swollen layer of the concentrated polymer brush and its structure play an important role.

11.
Phys Rev E ; 97(1-1): 012501, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448351

RESUMO

In this study, we investigate the α process of a polystyrene thin film using inelastic neutron scattering (INS), dielectric relaxation spectroscopy (DRS), and thermal expansion spectroscopy (TES). The DRS and TES measurements exhibited a decrease in glass transition temperature (T_{g}) with film thickness. On the other hand, an increase in T_{g} was observed in INS studies. In order to interpret this contradiction, we investigated the temperature dependence of the peak frequency (f_{m}) of the α process probed by DRS and TES. The experiments revealed an increase in the peak frequency (f_{m}) with decreasing film thickness in the frequency region. This observation is consistent with the observed decrease in T_{g} with thickness. Interestingly, the increase in T_{g} with film thickness was confirmed by fitting the temperature dependence measurements of the peak frequency with the Vogel-Fulcher-Tammann equation, within the frequency region probed by INS. The discrepancy between INS and DRS or TES descriptions of the α process is likely to be attributed to a decrease in the apparent activation energy with film thickness and reduced mobility, due to the impenetrable wall effect.

12.
Soft Matter ; 13(43): 7862-7869, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29019368

RESUMO

We studied the dynamics of zinc diacrylate (ZDA) reinforced polybutadiene rubber (BR) (ZDA/BR) using the quasielastic neutron scattering technique to determine the effect of concentration of ZDA on polymer dynamics. First, we evaluated the temperature dependence of mean square displacements (〈u2〉) for ZDA/BR with different ZDA volume fractions. 〈u2〉 increased with temperature below 170 K, and we observed no significant ZDA volume fraction dependence. However, it increased more steeply above 170 K, and the value of 〈u2〉 was smaller for the samples with increasing ZDA fraction. To elucidate the origin of the decrease in 〈u2〉 with increasing ZDA content, dynamic scattering laws (S(Q,ω)) were analyzed. An increase in the elastic component, an increase in the mean relaxation time, and a broadening of distribution of relaxation time were observed with the increasing volume fraction of ZDA. In addition, the ZDA volume fraction dependence of the elastic component roughly corresponded to that of elastic modulus, indicating that the elastic component is related to its mechanical strength. Referring to the previously reported static structure of the present ZDA/BR system, a model for the heterogeneous BR dynamics was proposed. This model assumes the coexistence of immobile, mobile, and interfacial constrained mobile regions. It was found to be appropriate for the explanation of the observed dynamics. We proposed that a network-like structure of the BR having a high crosslinking density around ZDA aggregates is mainly responsible for the high elastic modulus of ZDA/BR.

13.
Langmuir ; 33(19): 4675-4681, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28437112

RESUMO

Using grazing-incidence small-angle scattering (GISAXS) with computed tomography (CT), we have individually reconstructed the spatial distribution of a thin gold (Au) layer buried under a thin poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) layer. Owing to the difference between total reflection angles of Au and PS-b-P2VP, the scattering profiles for Au nanoparticles and self-assembled nanostructures of PS-b-P2VP could be independently obtained by changing the X-ray angle of incidence. Reconstruction of scattering profiles allows one to separately characterize spatial distributions in Au and PS-b-P2VP nanostructures.

14.
ACS Omega ; 1(3): 476-482, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457140

RESUMO

We observed the crystallization process in poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) blends using in situ simultaneous small- and wide-angle X-ray scattering measurements with a high-speed temperature control cell. In situ X-ray scattering measurements revealed that density fluctuations larger than the long spacing periods grew during crystallization above 130 °C. In particular, the time evolution of the density fluctuations has a strong dependence on the crystallization temperature. The density fluctuations will promote the crystal nucleation and growth processes of the stereocomplex and increase with increasing crystallization temperature, which is strongly correlated with the complexation of PLLA and PDLA chains. On the other hand, below 120 °C, the kinetics of stereocomplex formation might be hindered by the decreased mobility, and no density fluctuations were observed in the case of homo crystal growth of PLLA or PDLA.

15.
Sci Rep ; 5: 15485, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26503463

RESUMO

The nucleation event of amyloid fibrils is one of the most crucial processes that dictate the timing and rate of the pathology of diseases; however, information regarding how protein molecules associate to produce fibril nuclei is currently limited. In order to explore this issue in more detail, we performed time-resolved small angle X-ray scattering (SAXS) measurements on insulin fibrillation, in combination with additional multidirectional analyses of thioflavin T fluorescence, FTIR spectroscopy, light scattering, and light transmittance, during the fibrillation process of bovine insulin. SAXS monitoring revealed that insulin molecules associated into rod-like prefibrillar aggregates in the very early stage of the reaction. After the formation of these early aggregates, they appeared to further coalesce mutually to form larger clusters, and the SAXS profiles subsequently showed the further time evolution of conformational development towards mature amyloid fibrils. Distinct types of structural units in terms of shape in a nano-scale order, cross-ß content, and thioflavin T fluorescence intensity were observed in a manner that was dependent on the fibrillation pathways. These results suggest the presence of diverse substructures that characterize various fibrillation pathways, and eventually, manifest polymorphisms in mature amyloid fibrils.


Assuntos
Insulina/metabolismo , Espalhamento de Radiação , Difração de Raios X
16.
Artigo em Inglês | MEDLINE | ID: mdl-26382423

RESUMO

In a previous paper [Phys. Rev. E 83, 021801 (2011)] we performed neutron reflectivity (NR) measurements on a five-layer polystyrene (PS) thin film consisting of alternatively stacked deuterated polystyrene (dPS) and hydrogenated polystyrene (hPS) layers (dPS/hPS/dPS/hPS/dPS, ∼100 nm thick) on a Si substrate to reveal the distribution of Tg along the depth direction. Information on the Tg distribution is very useful to understand the interesting but unusual properties of polymer thin films. However, one problem that we have to clarify is if there are effects of deuterium labeling on Tg or not. To tackle the problem we performed low-energy muon spin relaxation (µSR) measurements on the above-mentioned deuterium-labeled five-layer PS thin film as well as dPS and hPS single-layer thin films ∼100 nm thick as a function of muon implantation energy. It was found that the deuterium labeling had no significant effects on the Tg distribution, guaranteeing that we can safely discuss the unusual thin film properties based on the Tg distribution revealed by NR on the deuterium-labeled thin films. In addition, the µSR result suggested that the higher Tg near the Si substrate is due to the strong orientation of phenyl rings.

17.
J Chem Phys ; 140(14): 144906, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24735317

RESUMO

We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10(-9) to 10(-5) s) and a scattering vector Q range (9.6-40 nm(-1)), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the α-process to the slow ß-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature T(c) in the mode coupling theory. The results suggest the important roles of hopping motions below T(c), which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism.

18.
Artigo em Inglês | MEDLINE | ID: mdl-24125286

RESUMO

We studied the distribution of glass transition temperature (Tg) through neutron reflectivity in a poly(methyl methacrylate) (PMMA) thin film supported on a silicon substrate with a five-layered PMMA thin film consisting of deuterated-PMMA and hydrogenated-PMMA. The depth distribution of Tg was successfully observed in the PMMA thin film. Compared to the previously reported distribution of Tg in a polystyrene thin film, the presence of a long-range interfacial effect, supposedly caused by an interaction between PMMA and the substrate, is considered to be responsible for the differences in both the distribution of Tg and the thickness dependence of Tg in both polymers. Therefore, it is expected that the thickness dependence of Tg reported for single-layered polymer thin films can, in principle, be understood from the viewpoint of the difference in the depth distribution of Tg.

19.
J Am Chem Soc ; 135(30): 11032-9, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23822587

RESUMO

Adhesamine is an organic small molecule that promotes adhesion and growth of cultured human cells by binding selectively to heparan sulfate on the cell surface. The present study combined chemical, physicochemical, and cell biological experiments, using adhesamine and its analogues, to examine the mechanism by which this dumbbell-shaped, non-peptidic molecule induces physiologically relevant cell adhesion. The results suggest that multiple adhesamine molecules cooperatively bind to heparan sulfate and induce its assembly, promoting clustering of heparan sulfate-bound syndecan-4 on the cell surface. A pilot study showed that adhesamine improved the viability and attachment of transplanted cells in mice. Further studies of adhesamine and other small molecules could lead to the design of assembly-inducing molecules for use in cell biology and cell therapy.


Assuntos
Heparitina Sulfato/metabolismo , Piperazinas/química , Piperazinas/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dimerização , Desenho de Fármacos , Humanos , Masculino , Camundongos , Modelos Moleculares , Piperazinas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Sindecanas/química
20.
Biomacromolecules ; 14(9): 3223-30, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23865684

RESUMO

In contrast to the success in artificial DNA- and peptide-based nanostructures, the ability of polysaccharides to self-assemble into one-, two-, and three-dimensional nanostructures are limited. Here, we describe a strategy for designing and fabricating nanorods using a regioselectively functionalized cellulose derivative at the air-water interface in a stepwise manner. A semisynthetic chlorophyll derivative, pyro-pheophorbide a, was partially introduced into the C-6 position of the cellulose backbone for the design of materials with specific optical properties. Remarkably, controlled formation of cellulose nanorods can be achieved, producing light-harvesting nanorods that display a larger bathochromic shift than their solution counterparts. The results presented here demonstrate that the self-assembly of functionalized polysaccharides on surfaces could lead the nanostructures mimicking the naturally occurring chloroplasts.


Assuntos
Celulose/análogos & derivados , Celulose/química , Clorofila/análogos & derivados , Nanotubos/química , Silicatos de Alumínio/química , Fontes de Energia Bioelétrica , Clorofila/química , Eletrodos , Ligação de Hidrogênio , Nanotubos/efeitos da radiação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...