Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 13(6): 754-760, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38819236

RESUMO

Cationic copolymerization of vinyl acetate and 3-alkoxyphthalides (ROPTs) was demonstrated to proceed using GaCl3 as a Lewis acid catalyst. Both monomers did not undergo homopolymerization, while copolymerization smoothly occurred via the crossover reactions, resulting in alternating copolymers with molecular weights of over 104. The obtained copolymers could be degraded by acid due to the cleavage of the diacyloxymethine moieties, which were derived from the crossover reactions from vinyl acetate to ROPT, in the main chain. An advantage of not radical but cationic copolymerization of vinyl esters was exerted by copolymerizations of radically reactive group-containing vinyl esters with ROPTs. For example, vinyl cinnamate was successfully copolymerized with an ROPT by the cationic mechanism, while keeping the cinnamoyl groups intact. The obtained alternating copolymer was subjected to a photodimerization reaction of the cinnamoyl groups in the side chains, resulting in an acid-degradable single-chain nanoparticle via the intramolecular crosslinking reactions.

2.
Macromol Rapid Commun ; 42(8): e2000479, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33200479

RESUMO

tert-Butyl esters are demonstrated to function as chain transfer agents (CTAs) in the cationic copolymerization of vinyl ether (VE) and oxirane via concurrent vinyl-addition and ring-opening mechanisms. In the copolymerization of isopropyl VE and isobutylene oxide (IBO), the IBO-derived propagating species reacts with tert-butyl acetate to generate a copolymer chain with an acetoxy group at the ω-end. This reaction liberates a tert-butyl cation; hence, a polymer chain with a tert-butyl group at the α-end is subsequently generated. Other tert-butyl esters also function as CTAs, and the substituent attached to the carbonyl group affects the chain transfer efficiency. In addition, ethyl acetate does not function as a CTA, which suggests the importance of the liberation of a tert-butyl cation for the chain transfer process. Chain transfer reactions by tert-butyl esters potentially occur reversibly through the reaction of the propagating cation with the ester group at the ω-end of another chain.


Assuntos
Compostos de Epóxi , Ésteres , Cátions , Éteres , Compostos de Vinila
3.
RSC Adv ; 10(69): 42378-42387, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516783

RESUMO

Appropriately designed amphiphilic diblock vinyl ether (VE) copolymers consisting of an ionic liquid-type segment and a hydrophobic segment were demonstrated to undergo physical gelation in water at extremely low concentrations. The precursor diblock copolymers were synthesized by the living cationic polymerization of 2-chloroethyl VE with a hydrophobic VE through an appropriately designed initiating system such as optimized temperature and catalyst. A relatively high temperature such as 20 °C was important for controlled polymerization of octadecyl VE. Ionic liquid moieties with imidazolium salt structures were subsequently introduced into the side chains of the diblock copolymers via chemical modifications of the 2-chloroethyl groups. The physical gelation behavior of the obtained diblock copolymers was examined in water, with a particular focus on the influence of the hydrophobic VEs, the hydrophilicity of the counteranions and the substituents on the ionic liquid-type segments, and the length of each segment. Based on this systematic investigation, physical gelation at concentrations as low as 0.2 wt% was achieved with diblock copolymers with a suitable balance of these factors.

4.
ACS Macro Lett ; 9(1): 77-83, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638651

RESUMO

Cationic copolymerization of different types of monomers, 4-hydroxybutyl vinyl ether (HBVE) and ε-caprolactone (CL), was explored using EtSO3H as an acid catalyst, producing copolymers with a remarkably wide variety of compositions and sequences. In the initial stage of the reaction, HBVE was unexpectedly isomerized to 2-methyl-1,3-dioxepane (MDOP), followed by concurrent copolymerization of MDOP and CL via active chain end and activated monomer mechanisms, respectively. The compositions and sequences of the copolymers were tunable, depending on the initial monomer concentrations. Moreover, a unique method was developed for transforming a copolymer with no CL homosequences into an "alternating" copolymer by removing MDOP from the system using a vacuum pump. This was achieved by the tandem reactions of depolymerization (unzipping) and random transacetalization (scrambling) under thermodynamic control. Specifically, the unzipping of HBVE homosequences proceeded at the oxonium chain end until a nondissociable ester bond emerged next to the chain end, while the scrambling of the main chain via transacetalization transferred midchain HBVE homosequences into the polymer chain end.

5.
ACS Macro Lett ; 8(2): 128-133, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35619420

RESUMO

Lactic acid-derived 1,3-dioxolan-4-ones (DOLOs), which do not undergo cationic homopolymerization, were demonstrated to yield copolymers with oxiranes through a cationic copolymerization via frequent crossover reactions. Acetal and ester moieties were generated in the main chain of the copolymers via crossover reactions from DOLO to oxirane and from oxirane to DOLO, respectively, which is in contrast to the unsuccessful generation of hemiacetal ester moieties in the homopropagation of DOLO. In addition, the terpolymerization of DOLO, oxirane, and vinyl ether (VE) proceeded via crossover reactions, while copolymers could not be generated from VE and DOLO in the absence of oxirane. The obtained co- and terpolymers could be degraded under acidic conditions due to the acetal moieties in the main chain. The strategy devised in this study shows a promising avenue for employing plant-derived "nonhomopolymerizable" compounds as building blocks for the synthesis of degradable co- and terpolymers with general-purpose monomers.

6.
ACS Macro Lett ; 8(11): 1498-1503, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-35651183

RESUMO

Silylacetal was demonstrated to function as a promising cleavable moiety for preparing polymers degradable via desilylation under diverse, mild conditions. The silylacetal moieties were installed in the main chain of the polymers via the controlled cationic copolymerization of trimethylsilyl vinyl ether (TMSVE) and a cyclic acetal under appropriately designed conditions. Importantly, desilylation reactions of the silylacetal units occurred under weak acid, base, or fluoride ion conditions, which triggered the degradation of the polymer via the spontaneous cleavage of the unstable hemiacetal moieties generated by the desilylation. Moreover, silylacetal moieties were successfully incorporated at the desired positions in the main chain via the addition of a small portion of TMSVE during the controlled cationic copolymerization of a vinyl ether and cyclic acetal. The strategy devised in this study will allow the design of elaborate polymers that undergo degradation triggered by various stimuli.

7.
Langmuir ; 34(26): 7751-7758, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29878793

RESUMO

Block copolymer-mediated self-assembly of colloidal nanoparticles has attracted great attention for the fabrication of a wide variety of nanoparticle arrays. We have previously shown that silica nanospheres (SNSs) 15 nm in diameter assemble into ring-like nanostructures in the presence of amphiphilic block copolymers poly[(2-ethoxyethyl vinyl ether)- block-(2-methoxyethyl vinyl ether)] (EOVE-MOVE) in an aqueous phase. Here, the effects of particle size of SNSs on this polymer-mediated self-assembly are studied systematically using scanning electron microscopy to observe SNSs of seven different sizes between 13 to 42 nm. SNSs of 13, 16, 19, and 21 nm in diameter assemble into nanorings in the presence of EOVE-MOVE. In contrast, larger SNSs of 26, 34, and 42 nm aggregate heavily, form chain-like networks, and remain dispersed, respectively, instead of forming ring-like nanostructures. The assembly trend for 26-42 nm-SNSs agrees with that expected from the increased colloidal stability for larger particles. Time-course observation for the assembled morphology of 16 nm-SNSs reveals that the nanorings, once formed, assemble further into network-like structures, as if the nanorings behave as building units for higher-order assembly. This indicates that the ring-like assembly is a fast process that can proceed onto random colloidal aggregation. Detailed analysis of nanoring structures revealed that the average number of SNSs comprising one ring decreased from 5.0 to 3.1 with increasing the SNS size from 13 to 21 nm. A change in the number of ring members was also observed when the length of EOVE-MOVE varied while the size of SNSs was fixed. Dynamic light scattering measurements and atomic force microscopy confirmed the SNSs/polymer composite structures. We hypothesize that a stable composite morphology may exist that is influenced by both the size of SNSs and the polymer molecular structures.

8.
J Am Chem Soc ; 139(23): 7713-7716, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28570064

RESUMO

A unique tandem reaction of sequence-controlled cationic copolymerization and site-specific hetero-Diels-Alder (DA) reaction is demonstrated. In the controlled cationic copolymerization of furfural and 2-acetoxyethyl vinyl ether (AcOVE), only the furan ring adjacent to the propagating carbocation underwent the hetero-DA reaction with the aldehyde moiety of another furfural molecule. A further and equally important feature of the copolymerization is that the obtained copolymers had unprecedented 2:(1 + 1)-type alternating structures of repeating sequences of two VE and one furfural units in the main chain and one furfural unit in the side chain. The specific DA reaction is attributed to the delocalization of the positive charge to the side furan ring.

9.
ACS Macro Lett ; 6(4): 365-369, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35610844

RESUMO

Controlled cationic vinyl-addition polymerization of an alkyl vinyl ether (VE) and ring-opening polymerization of ε-caprolactone (CL) simultaneously proceeded using HfCl4/Hf(OBu)4 as a dual-role catalyst for both mechanisms, yielding a graft copolymer consisting of a poly(VE) main chain and several poly(CL) side chains. The copolymer of conventionally incompatible monomers was generated via the unprecedented mechanisms consisting of orthogonal propagating reactions and transient merging. Specifically, the poly(CL) chains were incorporated into a poly(VE) chain through an exchange reaction between the VE-derived alkoxy group and the propagating poly(CL) chain at the acetal moiety of the propagating end of the poly(VE) chain. An appropriate ratio of HfCl4 and Hf(OBu)4 was indispensable for both the simultaneous vinyl-addition and ring-opening polymerizations and the alkoxy group exchange reaction.

10.
ACS Macro Lett ; 6(4): 463-467, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35610845

RESUMO

Highly stereospecific living polymerization of N-vinylcarbazole (NVC) successfully proceeded via a cationic mechanism as a result of the elaborate design of counteranions using an initiating system consisting of CF3SO3H, nBu4NX (X = Cl, Br, I), and a Lewis acid catalyst. The use of ZnCl2 and an appropriate amount of nBu4NCl quantitatively generated highly isotactic polymers (mm = 94%) with narrow molecular weight distributions (Mw/Mn ∼ 1.3) and molecular weights proportional to monomer conversion. In this system, a ZnCl42- species, which was formed as a counteranion of the propagating carbocation, most likely contributed to the stereoregulation of the polymers because the mm value drastically varied depending on the polymerization conditions, such as the Lewis acid catalyst and amount of added salt. Isotactic poly(N-vinylcarbazole) (PVK) showed different properties than atactic PVK based on fluorescence and differential scanning calorimetry (DSC) analysis.

11.
ACS Macro Lett ; 4(7): 783-787, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35596477

RESUMO

Cationic terpolymerization of vinyl ether (VE), oxirane, and ketone successfully proceeded via unprecedented concurrent vinyl-addition, ring-opening, and carbonyl-addition mechanisms. In particular, the use of cyclohexene oxide as an oxirane resulted in terpolymerization via an exclusive one-way cycle, i.e., the reactions occurred only in the VE → oxirane, oxirane → ketone, and ketone → VE directions. Terpolymers that have repeating units of (VE∼2-oxirane∼2-ketone)n were obtained under appropriate conditions. In addition, no two-monomer combination achieved efficient copolymerization, which suggests that three specific types of crossover reactions are required for successful terpolymerization. The presence of a ketone, a compound that has rarely been employed as a monomer, is indispensable for a one-way cycle: terpolymerization also proceeded with an aliphatic aldehyde but resulted in two-way crossover reactions at the aldehyde-derived propagating ends.

12.
ACS Macro Lett ; 3(1): 80-85, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35651114

RESUMO

Specifically designed alternating cationic copolymerization produced well-defined thermo- or pH-responsive polymers with complete acid-degradability. For example, a thermosensitive alternating copolymer with acid-labile acetal linkages in the main chain was obtained from the controlled cationic copolymerization of p-methoxybenzaldehyde (pMeOBzA) and a vinyl ether (VE) with an oxyethylenic side chain. The resulting copolymer exhibited a sharp thermosensitive phase transition in water. The same strategy but using different VEs with esters and benzaldehyde (BzA) yielded pH-responsive copolymers with nearly alternating sequences and narrow molecular weight distributions (MWDs). The alternately arranged acetal bonds in the copolymers allowed complete facile and rapid degradation under acidic conditions, which selectively produced low-molecular-weight compounds (MW ∼ 1-2 × 102).

13.
J Am Chem Soc ; 135(25): 9330-3, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23742209

RESUMO

Alkyl vinyl ethers and isobutylene oxide were concurrently copolymerized through cationic vinyl addition and ring opening using B(C6F5)3 as a catalyst. NMR analyses and acid hydrolysis of the products demonstrated that the copolymerization successfully proceeded through crossover reactions between vinyl and cyclic monomers to yield multiblock-like copolymers. Appropriate catalyst and monomer combinations with suitable reactivities were key for copolymerization.


Assuntos
Compostos de Boro/química , Compostos de Epóxi/química , Polímeros/síntese química , Compostos de Vinila/química , Catálise , Cátions/química , Polimerização , Polímeros/química
14.
Chem Commun (Camb) ; 48(88): 10904-6, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23023605

RESUMO

Fe(3)O(4) synthesized by magnetotactic bacteria and α-Fe(2)O(3) synthesized via a microbial-mineralization-inspired process functioned as catalysts for the controlled cationic polymerization of a vinyl ether.


Assuntos
Compostos Férricos/química , Óxido Ferroso-Férrico/química , Compostos de Vinila/química , Bactérias/metabolismo , Catálise , Óxido Ferroso-Férrico/metabolismo , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...