Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408582

RESUMO

Plant posture is controlled by various environmental cues, such as light, temperature, and gravity. The overall architecture is determined by the growth angles of lateral organs, such as roots and branches. The branch growth angle affected by gravity is known as the gravitropic setpoint angle (GSA), and it has been proposed that the GSA is determined by balancing two opposing growth components: gravitropism and anti-gravitropic offset (AGO). The molecular mechanisms underlying gravitropism have been studied extensively, but little is known about the nature of the AGO. Recent studies reported the importance of LAZY1-LIKE (LZY) family genes in the signaling process for gravitropism, such that loss-of-function mutants of LZY family genes resulted in reversed gravitropism, which we term it here as the "anti-gravitropic" phenotype. We assume that this peculiar phenotype manifests as the AGO due to the loss of gravitropism, we characterized the "anti-gravitropic" phenotype of Arabidopsis lzy multiple mutant genetically and physiologically. Our genetic interaction analyses strongly suggested that gravity-sensing cells are required for the "anti-gravitropic" phenotype in roots and lateral branches. We also show that starch-filled amyloplasts play a significant role in the "anti-gravitropic" phenotype, especially in the root of the lzy multiple mutant.

2.
Nutrients ; 11(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330962

RESUMO

Both glutamine (Gln) and glutamate (Glu) are known to exist in plasma and brain. However, despite the assumed relationship between brain and plasma, no studies have clarified the association between them. Proton magnetic resonance spectroscopy (MRS) was sequentially performed twice, with a 60-min interval, on 10 males and 10 females using a 3T scanner. Blood samples for liquid chromatography-mass spectrometry (LC/MS) to measure Gln and Glu concentrations in plasma were collected during the time interval between the two MRS sessions. MRS voxels of interest were localized at the posterior cingulate cortex (PCC) and cerebellum (Cbll) and measured by the SPECIAL sequence. Spearman's correlation coefficient was used to examine the association between brain and plasma metabolites. The Gln concentrations in PCC (mean of two measurements) were positively correlated with Gln concentrations in plasma (p < 0.01, r = 0.72). However, the Glu concentrations in the two regions were not correlated with those in plasma. Consideration of the different dynamics of Gln and Glu between plasma and brain is crucial when addressing the pathomechanism and therapeutic strategies for brain disorders such as Alzheimer's disease and hepatic encephalopathy.


Assuntos
Química Encefálica , Ácido Glutâmico/análise , Glutamina/análise , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Cerebelo/química , Cromatografia Líquida , Feminino , Ácido Glutâmico/sangue , Glutamina/sangue , Giro do Cíngulo/química , Humanos , Masculino , Espectrometria de Massas , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...