Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 1576-1584, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297706

RESUMO

We demonstrated characterizing the electric field waveform of multi-terahertz pulses (10 - 50 THz) as vector quantities in the time domain by applying the polarization modulated electro-optic sampling (POMEOS) method. The problem of an ultrabroadband gate pulse was solved by modifying the fitting function in POMEOS, and its validity was confirmed through numerical simulations. High accuracy and precision of approximately 1 mrad with 3 s accumulation were demonstrated. Our method can be applied not only to multi-terahertz polarization measurements for linear response but also to the evaluation of the driving field of intense pulses for nonlinear response or material control.

2.
Phys Rev Lett ; 132(1): 016301, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242663

RESUMO

We report the first observation of the spin Hall conductivity spectrum in GaAs at room temperature. Our terahertz polarimetry with a precision of several µrads resolves the Faraday rotation of terahertz pulses arising from the inverse spin Hall effect of optically injected spin-polarized electrons. The obtained spin Hall conductivity spectrum exhibits an excellent quantitative agreement with theory, demonstrating a crossover in the dominant origin from impurity scattering in the dc regime to the intrinsic Berry-curvature mechanism in the terahertz regime. Our spectroscopic technique opens a new pathway to analyze anomalous transports related to spin, valley, or orbital degrees of freedom.

3.
Nano Lett ; 24(1): 222-228, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147363

RESUMO

Chirality of massless fermions emerging in condensed matter is a key to understand their characteristic behavior as well as to exploit their functionality. However, the chiral nature of massless fermions in Dirac semimetals has remained elusive, due to equivalent occupation of carriers with the opposite chirality in thermal equilibrium. Here, we show that the isospin degree of freedom, which labels the chirality of massless carriers from a crystallographic point of view, can be injected by circularly polarized light. Terahertz Faraday rotation spectroscopy successfully detects the anomalous Hall conductivity by a light-induced isospin polarization in a three-dimensional Dirac semimetal, Cd3As2. Spectral analysis of the Hall conductivity reveals a long scattering time and a long decay time, which are characteristic of the isospin. The long-lived, robust, and reversible character of the isospin promises a potential application of Dirac semimetals in future information technology.

4.
Phys Rev Lett ; 131(9): 096901, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721840

RESUMO

We experimentally elucidate the origin of the anomalous Hall conductivity in a three-dimensional Dirac semimetal, Cd_{3}As_{2}, driven by circularly polarized light. Using time-resolved terahertz Faraday rotation spectroscopy, we determine the transient Hall conductivity spectrum with special attention to its sign. Our results clearly show the dominance of direct photocurrent generation assisted by the terahertz electric field. The contribution from the Floquet-Weyl nodes is found to be minor when the driving light is in resonance with interband transitions. We develop a generally applicable classification of microscopic mechanisms of light-induced anomalous Hall conductivity.

5.
Opt Express ; 31(12): 19371-19381, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381353

RESUMO

We demonstrate a jitter correction method for asynchronous optical sampling (ASOPS) terahertz (THz) time-domain spectroscopy using two free-running oscillators. This method simultaneously records the THz waveform and a harmonic of the laser repetition rate difference, Δ f r, to monitor the jitter information for software jitter correction. By suppressing the residual jitter below 0.1 ps, the accumulation of the THz waveform is achieved without losing the measurement bandwidth. Our measurement of water vapor successfully resolves the absorption linewidths below 1 GHz, demonstrating a robust ASOPS with a flexible, simple, and compact setup without any feedback control or additional continuous-wave THz source.

6.
Phys Rev Lett ; 130(12): 126302, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027855

RESUMO

We investigate ultrafast dynamics of the anomalous Hall effect (AHE) in the topological antiferromagnet Mn_{3}Sn with sub-100 fs time resolution. Optical pulse excitations largely elevate the electron temperature up to 700 K, and terahertz probe pulses clearly resolve ultrafast suppression of the AHE before demagnetization. The result is well reproduced by microscopic calculation of the intrinsic Berry-curvature mechanism while the extrinsic contribution is clearly excluded. Our work opens a new avenue for the study of nonequilibrium AHE to identify the microscopic origin by drastic control of the electron temperature by light.

7.
Phys Rev Lett ; 129(20): 207402, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36461987

RESUMO

Using broadband (12-45 THz) multi-terahertz spectroscopy, we show that stimulated Rayleigh scattering dominates the transient optical conductivity of cadmium arsenide, a Dirac semimetal, under an optical driving field at 30 THz. The characteristic dispersive line shape with net optical gain is accounted for by optical transitions between light-induced Floquet subbands, strikingly enhanced by the longitudinal plasma mode. Stimulated Rayleigh scattering with an unprecedentedly large refractive index change may pave the way for slow light generation in conductive solids at room temperature.

8.
Front Surg ; 9: 864255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647017

RESUMO

An ectopic parathyroid adenoma (EPA) is a rare entity. The aim of this study was to report our experience in the preoperative localization and surgical management of EPAs. This was a multicenter retrospective study involving patients diagnosed with an EPA (three males and seven females) from January 2005 to November 2021. The clinical features, preoperative management, and surgical procedures were analyzed. A cervical neck ultrasound was performed in all patients and showed a focus in eight patients. Cervicothoracic enhanced computed tomography was performed in all patients and showed a focus in nine patients. The 99mTc-MIBI scintigraphy was performed in eight patients and showed uptake in six of them. We performed a neck dissection and thoracotomy in one patient, a thoracoscopy in one patient, surgery with a focused approach in seven patients, four of whom were injected with indigo carmine blue, and surgery with a bilateral approach in one patient. 1 h following the parathyroidectomy, the parathyroid hormone (PTH) concentration was decreased to 40-80% of the baseline value. Establishing a preoperative diagnosis of an EPA is challenging for the surgeon, despite the progress in the morphologic assessment. An intraoperative PTH assay and injection of indigo carmine have been shown to be valuable tools in the appropriate surgical management of an EPA.

9.
Nano Lett ; 22(6): 2358-2364, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35285654

RESUMO

The electromagnetic response of Dirac semimetals in the infrared and terahertz frequency ranges is attracting growing interest for potential applications in optoelectronics and nonlinear optics. The interplay between the free-carrier response and interband transitions in the gapless, linear dispersion relation plays a key role in enabling novel functionalities. Here we investigate ultrafast dynamics in thin films of a photoexcited Dirac semimetal Cd3As2 by probing the broadband response functions as complex quantities in the multiterahertz region (10-45 THz, 40-180 meV, or 7-30 µm), which covers the crossover between the inter- and intraband response. We resolve dynamics of the photoexcited nonthermal electrons, which merge with originally existing carriers to form a single thermalized electron gas and how it is facilitated by high-density excitation. We also demonstrate that a large reduction of the refractive index by 80% dominates the nonequilibrium infrared response, which can be utilized for designing ultrafast switches in active optoelectronics.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34429366

RESUMO

BACKGROUND AND OBJECTIVE: To elucidate the relationship between melanoma cell adhesion molecule (MCAM)-expressing lymphocytes and pathogenesis of CNS inflammatory demyelinating diseases (IDDs). METHODS: Patients with multiple sclerosis (MS) (n = 72) and neuromyelitis optica spectrum disorder (NMOSD, n = 29) were included. We analyzed the frequency and absolute numbers of MCAM+ lymphocytes (memory helper T [mTh] cells, naive helper T cells, CD8+ T cells, and B cells) in the peripheral blood (PB) and the CSF of patients with MS and NMOSD, treated with/without disease-modifying drugs (DMDs) or steroids, using flow cytometry. RESULTS: The frequency of MCAM+ cells was higher in the mTh cell subset than that in other lymphocyte subsets. A significant increase in the frequency and the absolute number of MCAM+ mTh cells was observed in the PB of patients with NMOSD, whereas no increase was observed in the PB of patients with MS. The frequency of CSF MCAM+ mTh cells was higher in relapsing patients with MS and NMOSD than that in the control group. Although there was no difference in the frequencies of MCAM+ lymphocytes among the DMD-treated groups, fingolimod decreased the absolute number of MCAM+ lymphocytes. DISCUSSION: MCAM+ mTh cells were elevated in the CSF of relapsing patients with MS and in both the PB and CSF of patients with NMOSD. These results indicate that MCAM contributes to the pathogenesis of MS and NMOSD through different mechanisms. MCAM could be a therapeutic target of CNS IDDs, and further study is needed to elucidate the underlying mechanism of MCAM in CNS IDD pathogenesis.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Linfócitos T Auxiliares-Indutores/metabolismo , Adulto , Idoso , Antígeno CD146/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/imunologia , Miastenia Gravis/sangue , Miastenia Gravis/líquido cefalorraquidiano , Miastenia Gravis/imunologia , Neuromielite Óptica/sangue , Neuromielite Óptica/líquido cefalorraquidiano , Neuromielite Óptica/imunologia , Adulto Jovem
11.
Opt Express ; 29(3): 3479-3489, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770945

RESUMO

We report optical parametric amplification (OPA) of low-frequency infrared pulses in the intermediate region between terahertz (THz) frequency and mid-infrared (MIR), i.e., from 16.9 to 44.8 THz (6.7-17.8 µm). The 255-fs laser output of the Yb:KGW regenerative amplifier is compressed to 11-fs pulses using a multi-plate broadening scheme, which generates THz-to-MIR pulses with a spectrum extending to approximately 50 THz by intra-pulse differential frequency generation (DFG) in GaSe. The THz-to-MIR pulses are further amplified using a two-stage OPA in GaSe. The temporal dynamics and photocarrier effects during OPA are characterized in the time domain. Owing to the intra-pulse DFG, the long-term phase drift of the THz-to-MIR pulses after two-stage OPA is as small as 16 mrad during a 6-h operation without any active feedback. Our scheme using the intra-pulse DFG and post-amplification proposes a new route to intense THz-to-MIR light sources with extreme phase stability.

12.
Light Sci Appl ; 9: 168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042531

RESUMO

High-order harmonic generation (HHG) is currently utilized for developing compact table-top radiation sources to provide highly coherent extreme ultraviolet (XUV) and soft X-ray pulses; however, the low repetition rate of fundamental lasers, which is typically in the multi-kHz range, restricts the area of application for such HHG-based radiation sources. Here, we demonstrate a novel method for realizing a MHz-repetition-rate coherent XUV light source by utilizing intracavity HHG in a mode-locked oscillator with an Yb:YAG thin disk laser medium and a 100-m-long ring cavity. We have successfully implemented HHG by introducing two different rare gases into two separate foci and picking up each HH beam. Owing to the two different HH beams generated from one cavity, this XUV light source will open a new route to performing a time-resolved measurement with an XUV-pump and XUV-probe scheme at a MHz-repetition rate with a femtosecond resolution.

13.
Phys Rev Lett ; 124(11): 117402, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242712

RESUMO

We report strong terahertz (∼10^{12} Hz) high harmonic generation at room temperature in thin films of Cd_{3}As_{2}, a three-dimensional Dirac semimetal. Third harmonics are detectable with a tabletop light source and can be as strong as 100 V/cm by applying a fundamental field of 6.5 kV/cm inside the film, demonstrating an unprecedented efficiency for terahertz frequency conversion. Our time-resolved terahertz spectroscopy and calculations also clarify the microscopic mechanism of the nonlinearity originating in the coherent acceleration of Dirac electrons in momentum space. Our results provide clear insights for nonlinear currents of Dirac electrons driven by the terahertz field under the influence of scattering, paving the way toward novel devices for high-speed electronics and photonics based on topological semimetals.

14.
Nat Commun ; 11(1): 909, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060261

RESUMO

Antiferromagnetic spin motion at terahertz (THz) frequencies attracts growing interests for fast spintronics, however, their smaller responses to external field inhibit device application. Recently the noncollinear antiferromagnet Mn3Sn, a Weyl semimetal candidate, was reported to show large anomalous Hall effect (AHE) at room temperature comparable to ferromagnets. Dynamical aspect of such large responses is an important issue to be clarified for future THz data processing. Here the THz anomalous Hall conductivity in Mn3Sn thin films is investigated by polarization-resolved spectroscopy. Large anomalous Hall conductivity [Formula: see text] at THz frequencies is clearly observed as polarization rotation. A peculiar temperature dependence corresponding to the breaking/recovery of symmetry in the spin texture is also discussed. Observation of the THz AHE at room temperature demonstrates the ultrafast readout for the antiferromagnetic spintronics using Mn3Sn, and will also open new avenue for studying nonequilibrium dynamics in Weyl antiferromagnets.

15.
Sci Rep ; 7: 42540, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198395

RESUMO

Terahertz (THz) imaging has a strong potential for applications because many molecules have fingerprint spectra in this frequency region. Spectroscopic imaging in the THz region is a promising technique to fully exploit this characteristic. However, the performance of conventional techniques is restricted by the requirement of multidimensional scanning, which implies an image data acquisition time of several minutes. In this study, we propose and demonstrate a novel broadband THz spectroscopic imaging method that enables real-time image acquisition using a high-sensitivity THz camera. By exploiting the two-dimensionality of the detector, a broadband multi-channel spectrometer near 1 THz was constructed with a reflection type diffraction grating and a high-power THz source. To demonstrate the advantages of the developed technique, we performed molecule-specific imaging and high-speed acquisition of two-dimensional (2D) images. Two different sugar molecules (lactose and D-fructose) were identified with fingerprint spectra, and their distributions in one-dimensional space were obtained at a fast video rate (15 frames per second). Combined with the one-dimensional (1D) mechanical scanning of the sample, two-dimensional molecule-specific images can be obtained only in a few seconds. Our method can be applied in various important fields such as security and biomedicine.

16.
Nat Commun ; 6: 8422, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26423346

RESUMO

Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range.

17.
Opt Express ; 22(15): 17915-29, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089412

RESUMO

We have developed an electro-optic (EO) sampling method with polarization modulation of probe pulses; this method allows us to measure the direction of a terahertz (THz) electric-field vector with a precision of 0.1 mrad in a data acquisition time of 660 ms using a 14.0-kHz repetition rate pulsed light source. Through combination with a THz time-domain spectroscopy technique, a time-dependent two-dimensional THz electric field was obtained. We used a photoelastic modulator for probe-polarization modulation and a (111)-oriented zincblende crystal as the EO crystal. Using the tilted pulse front excitation method with stable regeneratively amplified pulses, we prepared stable and intense THz pulses and performed pulse-by-pulse analog-to-digital conversion of the signals. These techniques significantly reduced statistical errors and enabled sub-mrad THz polarization measurements. We examined the performance of this method by measuring a wire-grid polarizer as a sample. The present method will open a new frontier of high-precision THz polarization sensitive measurements.

18.
Opt Lett ; 39(13): 3714-7, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978718

RESUMO

We propose and demonstrate a method for generating broadband terahertz (THz) vortex beams. We convert a THz radially polarized beam into a THz vortex beam via achromatic polarization optical elements for THz waves and characterize the topological charge of the generated vortex beam by measuring the spatial distribution of the phase of the THz wave at its focal plane. For example, a uniform topological charge of +1 is achieved over a wide frequency range. We also demonstrate that the sign of the topological charge can be easily controlled. By utilizing the orbital angular momentum of the beam, these results open new THz wave technologies for sensing, manipulation, and telecommunication.

19.
Opt Lett ; 39(11): 3274-7, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24876031

RESUMO

We proposed and demonstrated active control of terahertz optical activity via chiral patterned photoexcitation in a semiconductor with a spatial light modulator (SLM). Arbitrary patterns can be generated by a SLM, including completely symmetric enantiomer pairs. This technique provides a new route to terahertz polarization modulators.


Assuntos
Dispositivos Ópticos , Desenho de Equipamento , Luz , Fenômenos Ópticos , Rotação Ocular , Semicondutores
20.
Opt Express ; 21(9): 10642-50, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23669920

RESUMO

Bare metal wires have recently been demonstrated as waveguides for transporting terahertz (THz) radiation, where the guiding mode is radially polarized surface Sommerfeld waves. In this study, we demonstrate high-efficiency coupling of a broadband radially polarized THz pulsed beam, which is generated with a polarization-controlled beam by a segmented half-wave-plate mode converter, to bare copper wires. A total coupling efficiency up to 16.8% is observed, and at 0.3 THz, the maximum coupling efficiency is 66.3%. The results of mode-overlap calculation and numerical simulation support the experimental data well.


Assuntos
Cobre/química , Nanofios/química , Ressonância de Plasmônio de Superfície/instrumentação , Radiação Terahertz , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Teóricos , Nanofios/ultraestrutura , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...