Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37430847

RESUMO

In this review, the emerging work using a technique known as modulated photothermal radiometry (MPTR) is evaluated. As MPTR has matured, the previous discussions on theory and modeling have become increasingly limited in their applicability to the current state of the art. After a brief history of the technique, the currently used thermodynamic theory is explained, highlighting the commonly applied simplifications. The validity of the simplifications is explored via modeling. Various experimental designs are compared, and the differences are explored. New applications, as well as emerging analysis techniques, are presented to emphasize the trajectory of MPTR.

2.
Opt Express ; 30(9): 15659-15668, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473281

RESUMO

In this paper, we present a simple cascaded Fabry-Perot interferometer (FPI) that can be used to measure in real-time the refractive index (RI) and length variation in silica optical fibers caused due to external physical parameters, such as temperature, strain, and radiation. As a proof-of-concept, we experimentally demonstrate real-time monitoring of temperature effects on the RI and length and measure the thermo-optic coefficient (TOC) and thermal expansion coefficient (TEC) by using the cascaded FPI within a temperature range of 21-486°C. The experimental results provide a TEC of 5.53 × 10-7/°C and TOC of 4.28 × 10-6/°C within the specified temperature range. Such a simple cascaded FPI structure will enable the design of optical sensors to correct for measurement errors by understanding the change in RI and length of optical fiber caused by environment parameters.

3.
Sensors (Basel) ; 21(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960286

RESUMO

Neutron and gamma irradiation is known to compact silica, resulting in macroscopic changes in refractive index (RI) and geometric structure. The change in RI and linear compaction in a radiation environment is caused by three well-known mechanisms: (i) radiation-induced attenuation (RIA), (ii) radiation-induced compaction (RIC), and (iii) radiation-induced emission (RIE). These macroscopic changes induce errors in monitoring physical parameters such as temperature, pressure, and strain in optical fiber-based sensors, which limit their application in radiation environments. We present a cascaded Fabry-Perot interferometer (FPI) technique to measure macroscopic properties, such as radiation-induced change in RI and length compaction in real time to actively account for sensor drift. The proposed cascaded FPI consists of two cavities: the first cavity is an air cavity, and the second is a silica cavity. The length compaction from the air cavity is used to deduce the RI change within the silica cavity. We utilize fast Fourier transform (FFT) algorithm and two bandpass filters for the signal extraction of each cavity. Inclusion of such a simple cascaded FPI structure will enable accurate determination of physical parameters under the test.


Assuntos
Interferometria , Fibras Ópticas , Desenho de Equipamento , Refratometria , Temperatura
4.
Sensors (Basel) ; 21(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203744

RESUMO

Optical fiber sensors (OFS) are a potential candidate for monitoring physical parameters in nuclear environments. However, under an irradiation field the optical response of the OFS is modified via three primary mechanisms: (i) radiation-induced attenuation (RIA), (ii) radiation-induced emission (RIE), and (iii) radiation-induced compaction (RIC). For resonance-based sensors, RIC plays a significant role in modifying their performance characteristics. In this paper, we numerically investigate independently the effects of RIC and RIA on three types of OFS widely considered for radiation environments: fiber Bragg grating (FBG), long-period grating (LPG), and Fabry-Perot (F-P) sensors. In our RIC modeling, experimentally calculated refractive index (RI) changes due to low-dose radiation are extrapolated using a power law to calculate density changes at high doses. The changes in RI and length are subsequently calculated using the Lorentz-Lorenz relation and an established empirical equation, respectively. The effects of both the change in the RI and length contraction on OFS are modeled for both low and high doses using FIMMWAVE, a commercially available vectorial mode solver. An in-depth understanding of how radiation affects OFS may reveal various potential OFS applications in several types of radiation environments, such as nuclear reactors or in space.

5.
J Phys Chem Lett ; 10(10): 2386-2392, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31010285

RESUMO

Molecular excitons are used in a variety of applications including light harvesting, optoelectronics, and nanoscale computing. Controlled aggregation via covalent attachment of dyes to DNA templates is a promising aggregate assembly technique that enables the design of extended dye networks. However, there are few studies of exciton dynamics in DNA-templated dye aggregates. We report time-resolved excited-state dynamics measurements of two cyanine-based dye aggregates, a J-like dimer and an H-like tetramer, formed through DNA-templating of covalently attached dyes. Time-resolved fluorescence and transient absorption indicate that nonradiative decay, in the form of internal conversion, dominates the aggregate ground state recovery dynamics, with singlet exciton lifetimes on the order of tens of picoseconds for the aggregates versus nanoseconds for the monomer. These results highlight the importance of circumventing nonradiative decay pathways in the future design of DNA-templated dye aggregates.


Assuntos
Carbocianinas/química , DNA/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...