Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 7: 882, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446114

RESUMO

The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.

2.
Biotechnol Biofuels ; 9: 30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26848310

RESUMO

BACKGROUND: There are many different types of pretreatment carried out to prepare cellulosic substrates for fermentation. In this study, one- and two-stage hydrothermal pretreatment were carried out to determine their effects on subsequent fermentations. The two substrates were found to behave differently during fermentation. The two substrates were then characterized using physical and chemical parameters. RESULTS: The one-stage substrate was found to have higher carbohydrate content and lower lignin content. It exhibited a higher level of viscosity, a larger settled volume, and a slower settling time than the two-stage substrate. It also showed higher polarity and reduced crystallinity. Glycome profiling showed physical differences between the two substrates, specifically pointing toward higher levels of pectin and hemicellulose in the one-stage substrate (MS1112) as compared to the two-stage substrate (MS1107). CONCLUSIONS: We hypothesize that these physical and chemical differences between the substrates contribute to the differences seen during fermentation including: ethanol yield, ethanol titer, fermentation rate, fermentation completion time, mixing, and substrate solubilization. These findings can be used in optimizing pretreatment parameters to maximize ethanol conversion and overall process yield for hardwood substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...