Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35739953

RESUMO

The potential radical scavenging, antioxidant activities (DPPH and ABTS) and bioactive constituents of several plant aqueous extracts (Curcuma longa, CL; Myristica fragrans, MF; Zingiber officinale, ZO; Cymbopogon citratus, CC and Thymus vulgaris, TV as well as their mixture) were investigated. The effect of these extracts on quality aspects (sensory characteristic, color traits, and Thiobarbituric acid) of rabbit meat during a 16-day cold (4 ± 2 °C) storage were investigated. Total phenolics and flavonoid contents of all extracts ranged from 13.27 ± 0.57 to 25.23 ± 0.49 mg GAE/g and 6.57 ± 0.22 to 13.24 ± 0.19 mg quercetin/g, respectively. The aqueous extract of MF had the highest (p ≤ 0.05) ABTS scavenging activity (4.55 µ mol Te/g dry extract), whereas the highest (p < 0.05) DPPH scavenging activity was detected in ZO extract (9.32 µ mol Te/g dry extract). Identification of extracts' bioactive compounds by GC-MS revealed that Eugenol (34.51%), Cinnamaldehyde (44.71%), Carvacrol (40.49%), Eicosane aldehyde (31.73%), and thymol (50.04%) are the first abundant bioactive compounds of CL, MF, ZO, CC, and TV aqueous extracts, respectively. Generally, the thiobarbituric acid reactive substances (TBARS) of all cold stored rabbit meat increased (p < 0.05) by increasing the storage time. The lowest TBARS values were detected for the samples treated with 0.2% of plant extracts mixture, which increased the shelf life of cold-stored rabbits by 50%. Significant (p < 0.05) increases in both L* and b* were observed with extended storage time. Meanwhile, the redness of the cold stored rabbit meat had an opposite trend. Treating the cold stored rabbit meat with 0.2% of the extract's mixture doubled the storage time with acceptable odor and taste. The results indicated that the studied plant extracts may be effective against rancidity and may be used as a natural antioxidant to prolong the shelf life of cold-stored rabbit meat.

2.
J Agric Food Chem ; 60(34): 8444-9, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22793673

RESUMO

The presence of phenolic acids in cereal grain is thought to influence starch hydrolysis during liquefaction and saccharification of grain flours in the bioethanol industry. As a basis for remodeling starch hydrolysis systems and understanding inhibition mechanisms, the composition and concentration of phenolic acids in whole grain flours of triticale, wheat, barley, and corn were analyzed by high-performance liquid chromatography. The total phenolic acid contents (sum of nine phenolic acids) in the four grains were 1.14, 1.70, 0.90, and 1.25 mg/g, respectively, with more than 90% found in the bound form. Ferulic, coumaric, and protocatechuic acids were the major phenolic acids in triticale and wheat. Gallic acid was also rich in triticale. Ferulic, coumaric, hydroxybenzoic, and gallic acids were predominant in barley. In corn, ferulic, coumaric, gallic, and syringic acids were abundant. On the basis of these profiles, pure phenolic acids were added individually and collectively to isolated starches at amounts either equivalent to or 3 times those in the whole grains for hydrolysis. The degree of starch hydrolysis with α-amylase and amyloglucosidase decreased up to 8% when individual phenolic acids were present in cooked starch slurry. The decreases were more pronounced when phenolic acids were added collectively (4-5% with α-amylase and 9-13% with sequential α-amylase and amyloglucosidase). The study of a phenolic acid-starch-enzyme model system indicated that the interactions of phenolic acid-enzyme and phenolic acid-starch significantly contributed to the inhibitory effect of starch hydrolysis. Heating facilitated the interactions. Phenolic acids thus play a significant role in the resistance of starch to enzyme and/or the loss of enzyme activity during starch hydrolysis.


Assuntos
Grão Comestível/química , Hidroxibenzoatos/análise , Hidroxibenzoatos/farmacologia , Amido/química , Ácidos Cumáricos/análise , Glucana 1,4-alfa-Glucosidase/química , Glucana 1,4-alfa-Glucosidase/metabolismo , Hordeum/química , Hidrólise , Triticum/química , Zea mays/química , alfa-Amilases/química , alfa-Amilases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...