Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(40): 45437-45443, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32852194

RESUMO

The La0.7Sr0.3CoO3-δ/La0.7Sr0.3MnO3-δ (LSCO/LSMO) bilayer system is an ideal perovskite oxide platform for investigating interface reconstruction and its effect on their magnetic properties. Previous studies have shown that LSCO can separate into magnetic sublayers, which possess distinct trends as the total LSCO thickness increases. In this study, we used polarized neutron reflectometry to quantify changes in the magnetic and chemical depth profiles, and it confirms the formation of ∼12 Å-thick interfacial LSCO and LSMO layers, characterized by a decreased nuclear scattering length density compared to the bulk of the layers. This decrease is attributed to the combined effects of oxygen vacancy formation and interfacial charge transfer, which lead to magnetically active Co2+ ions with ionic radii larger than the Co3+/Co4+ ions typically found in bulk LSCO or single-layer films. The interfacial magnetization values, as well as Co2+ ion and oxygen vacancy concentrations, depend strongly on the LSCO layer thickness. These results highlight the sensitive interplay of the cation valence states, oxygen vacancy concentration, and magnetization at interfaces in perovskite oxide multilayers, demonstrating the potential to tune their functional properties via careful design of their structure.

2.
J Phys Condens Matter ; 30(1): 015805, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29144279

RESUMO

The extent of interfacial charge transfer and the resulting impact on magnetic interactions were investigated as a function of sublayer thickness in La0.7Sr0.3MnO3/La0.7Sr0.3CoO3 ferromagnetic superlattices. Element-specific soft x-ray magnetic spectroscopy reveals that the electronic structure is altered within 5-6 unit cells of the chemical interface, and can lead to a synthetic ferromagnet with strong magnetic coupling between the sublayers. The saturation magnetization and coercivity depends sensitively on the sublayer thickness due to the length scale of this interfacial effect. For larger sublayer thicknesses, the La0.7Sr0.3MnO3 and La0.7Sr0.3CoO3 sublayers are magnetically decoupled, displaying two independent magnetic transitions with little sublayer thickness dependence. These results demonstrate how interfacial phenomena at perovskite oxide interfaces can be used to tailor their functional properties at the atomic scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...