Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Oncol ; 12(1): 204, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29282134

RESUMO

BACKGROUND: Preclinical radiation biology has become increasingly sophisticated due to the implementation of advanced small animal image guided radiation platforms into laboratory investigation. These small animal radiotherapy devices enable state-of-the-art image guided therapy (IGRT) research to be performed by combining high-resolution cone beam computed tomography (CBCT) imaging with an isocentric irradiation system. Such platforms are capable of replicating modern clinical systems similar to those that integrate a linear accelerator with on-board CBCT image guidance. METHODS: In this study, we present a dosimetric evaluation of the small animal radiotherapy research platform (SARRP, Xstrahl Inc.) focusing on small field dosimetry. Physical dosimetry was assessed using ion chamber for calibration and radiochromic film, investigating the impact of beam focus size on the dose rate output as well as beam characteristics (beam shape and penumbra). Two film analysis tools) have been used to assess the dose output using the 0.5 mm diameter aperture. RESULTS: Good agreement (between 1.7-3%) was found between the measured physical doses and the data provided by Xstrahl for all apertures used. Furthermore, all small field dosimetry data are in good agreement for both film reading methods and with our Monte Carlo simulations for both focal spot sizes. Furthermore, the small focal spot has been shown to produce a more homogenous beam with more stable penumbra over time. CONCLUSIONS: FilmQA Pro is a suitable tool for small field dosimetry, with a sufficiently small sampling area (0.1 mm) to ensure an accurate measurement. The electron beam focus should be chosen with care as this can potentially impact on beam stability and reproducibility.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Imagens de Fantasmas , Radiobiologia , Planejamento da Radioterapia Assistida por Computador/instrumentação , Animais , Método de Monte Carlo
2.
Int J Radiat Oncol Biol Phys ; 96(1): 161-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27511853

RESUMO

PURPOSE: To assess the efficacy of 3-week schedules of low-dose pulsed radiation treatment (PRT) and standard radiation therapy (SRT), with concurrent cisplatin (CDDP) in a head and neck squamous cell carcinoma xenograft model. METHODS AND MATERIALS: Subcutaneous UT-SCC-14 tumors were established in athymic NIH III HO female mice. A total of 30 Gy was administered as 2 Gy/d, 5 d/wk for 3 weeks, either by PRT (10 × 0.2 Gy/d, with a 3-minute break between each 0.2-Gy dose) or SRT (2 Gy/d, uninterrupted delivery) in combination with concurrent 2 mg/kg CDDP 3 times per week in the final 2 weeks of radiation therapy. Treatment-induced growth delays were defined from twice-weekly tumor volume measurements. Tumor hypoxia was assessed by (18)F-fluoromisonidazole positron emission tomography imaging, and calculated maximum standardized uptake values compared with tumor histology. Tumor vessel density and hypoxia were measured by quantitative immunohistochemistry. Normal tissues effects were evaluated in gut and skin. RESULTS: Untreated tumors grew to 1000 mm(3) in 25.4 days (±1.2), compared with delays of 62.3 days (±3.5) for SRT + CDDP and 80.2 days (±5.0) for PRT + CDDP. Time to reach 2× pretreatment volume ranged from 8.2 days (±1.8) for untreated tumors to 67.1 days (±4.7) after PRT + CDDP. Significant differences in tumor growth delay were observed for SRT versus SRT + CDDP (P=.04), PRT versus PRT + CDDP (P=.035), and SRT + CDDP versus PRT + CDDP (P=.033), and for survival between PRT versus PRT + CDDP (P=.017) and SRT + CDDP versus PRT + CDDP (P=.008). Differences in tumor hypoxia were evident by (18)F-fluoromisonidazole positron emission tomography imaging between SRT and PRT (P=.025), although not with concurrent CDDP. Tumor vessel density differed between SRT + CDDP and PRT + CDDP (P=.011). No differences in normal tissue parameters were seen. CONCLUSIONS: Concurrent CDDP was more effective in combination PRT than SRT at restricting tumor growth. Significant differences in tumor vascular density were evident between PRT and SRT, suggesting a preservation of vascular network with PRT.


Assuntos
Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Quimiorradioterapia/métodos , Cisplatino/administração & dosagem , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Radioterapia Conformacional/métodos , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Camundongos , Dosagem Radioterapêutica , Carcinoma de Células Escamosas de Cabeça e Pescoço , Resultado do Tratamento
3.
Int J Radiat Oncol Biol Phys ; 96(1): 170-8, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27511854

RESUMO

PURPOSE: To characterize the tumor microenvironment after standard radiation therapy (SRT) and pulsed radiation therapy (PRT) in Lewis lung carcinoma (LLC) allografts. METHODS AND MATERIALS: Subcutaneous LLC tumors were established in C57BL/6 mice. Standard RT or PRT was given at 2 Gy/d for a total dose of 20 Gy using a 5 days on, 2 days off schedule to mimic clinical delivery. Radiation-induced tumor microenvironment changes were examined after treatment using flow cytometry and antibody-specific histopathology. Normal tissue effects were measured using noninvasive (18)F-fluorodeoxyglucose positron emission tomography/computed tomography after naïve animals were given whole-lung irradiation to 40 Gy in 4 weeks using the same 2-Gy/d regimens. RESULTS: Over the 2 weeks of therapy, PRT was more effective than SRT at reducing tumor growth rate (0.31 ± 0.02 mm(3)/d and 0.55 ± 0.04 mm(3)/d, respectively; P<.007). Histopathology showed a significant comparative reduction in the levels of Ki-67 (14.5% ± 3%), hypoxia (10% ± 3.5%), vascular endothelial growth factor (2.3% ± 1%), and stromal-derived factor-1α (2.5% ± 1.4%), as well as a concomitant decrease in CD45(+) bone marrow-derived cell (BMDC) migration (7.8% ± 2.2%) after PRT. The addition of AMD3100 also decreased CD45(+) BMDC migration in treated tumors (0.6% ± 0.1%). Higher vessel density was observed in treated tumors. No differences were observed in normal lung tissue after PRT or SRT. CONCLUSIONS: Pulsed RT-treated tumors exhibited slower growth and reduced hypoxia. Pulsed RT eliminated initiation of supportive mechanisms utilized by tumors in low oxygen microenvironments, including angiogenesis and recruitment of BMDCs.


Assuntos
Células da Medula Óssea/efeitos da radiação , Carcinoma Pulmonar de Lewis/radioterapia , Movimento Celular/efeitos da radiação , Neoplasias Experimentais/radioterapia , Microambiente Tumoral/efeitos da radiação , Animais , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Masculino , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/patologia , Hipofracionamento da Dose de Radiação , Resultado do Tratamento , Carga Tumoral/efeitos da radiação
4.
Int J Radiat Oncol Biol Phys ; 92(4): 820-8, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26104936

RESUMO

PURPOSE: To evaluate the efficacy of low-dose pulsed radiation therapy (PRT) in 2 head and neck squamous cell carcinoma (HNSCC) xenografts and to investigate the mechanism of action of PRT compared with standard radiation therapy (SRT). METHODS AND MATERIALS: Subcutaneous radiosensitive UT-SCC-14 and radioresistant UT-SCC-15 xenografts were established in athymic NIH III HO female mice. Tumors were irradiated with 2 Gy/day by continuous standard delivery (SRT: 2 Gy) or discontinuous low-dose pulsed delivery (PRT: 0.2 Gy × 10 with 3-min pulse interval) to total doses of 20 Gy (UT14) or 40 Gy (UT15) using a clinical 5-day on/2-day off schedule. Treatment response was assessed by changes in tumor volume, (18)F-fluorodeoxyglucose (FDG) (tumor metabolism), and (18)F-fluoromisonidazole (FMISO) (hypoxia) positron emission tomography (PET) imaging before, at midpoint, and after treatment. Tumor hypoxia using pimonidazole staining and vascular density (CD34 staining) were assessed by quantitative histopathology. RESULTS: UT15 and UT14 tumors responded similarly in terms of growth delay to either SRT or PRT. When compared with UT14 tumors, UT15 tumors demonstrated significantly lower uptake of FDG at all time points after irradiation. UT14 tumors demonstrated higher levels of tumor hypoxia after SRT when compared with PRT as measured by (18)F-FMISO PET. By contrast, no differences were seen in (18)F-FMISO PET imaging between SRT and PRT for UT15 tumors. Histologic analysis of pimonidazole staining mimicked the (18)F-FMISO PET imaging data, showing an increase in hypoxia in SRT-treated UT14 tumors but not PRT-treated tumors. CONCLUSIONS: Differences in (18)F-FMISO uptake for UT14 tumors after radiation therapy between PRT and SRT were measurable despite the similar tumor growth delay responses. In UT15 tumors, both SRT and PRT were equally effective at reducing tumor hypoxia to a significant level as measured by (18)F-FMISO and pimonidazole.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Consumo de Oxigênio/efeitos da radiação , Animais , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/patologia , Hipóxia Celular , Corantes , Modelos Animais de Doenças , Feminino , Fluordesoxiglucose F18/farmacocinética , Neoplasias de Cabeça e Pescoço/irrigação sanguínea , Neoplasias de Cabeça e Pescoço/patologia , Xenoenxertos , Camundongos , Camundongos Nus , Misonidazol/análogos & derivados , Misonidazol/farmacocinética , Recidiva Local de Neoplasia , Nitroimidazóis , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carga Tumoral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...