Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Nat Commun ; 13(1): 6168, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257965

RESUMO

Actively dividing cells, including some cancers, rely on aerobic glycolysis rather than oxidative phosphorylation to generate energy, a phenomenon termed the Warburg effect. Constitutive activation of the Hypoxia Inducible Factor (HIF-1), a transcription factor known for mediating an adaptive response to oxygen deprivation (hypoxia), is a hallmark of the Warburg effect. HIF-1 is thought to promote glycolysis and suppress oxidative phosphorylation. Here, we instead show that HIF-1 can promote gluconeogenesis. Using a multiomics approach, we reveal the genomic, transcriptomic, and metabolomic landscapes regulated by constitutively active HIF-1 in C. elegans. We use RNA-seq and ChIP-seq under aerobic conditions to analyze mutants lacking EGL-9, a key negative regulator of HIF-1. We integrate these approaches to identify over two hundred genes directly and functionally upregulated by HIF-1, including the PEP carboxykinase PCK-1, a rate-limiting mediator of gluconeogenesis. This activation of PCK-1 by HIF-1 promotes survival in response to both oxidative and hypoxic stress. Our work identifies functional direct targets of HIF-1 in vivo, comprehensively describing the metabolome induced by HIF-1 activation in an organism.


Assuntos
Caenorhabditis elegans , Gluconeogênese , Animais , Caenorhabditis elegans/genética , Gluconeogênese/genética , Fatores de Transcrição/genética , Hipóxia Celular , Hipóxia/genética , Oxigênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
3.
PLoS One ; 14(5): e0216628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071172

RESUMO

The transforming growth factor-ß (TGFß) family plays an important role in many developmental processes and when mutated often contributes to various diseases. Marfan syndrome is a genetic disease with an occurrence of approximately 1 in 5,000. The disease is caused by mutations in fibrillin, which lead to an increase in TGFß ligand activity, resulting in abnormalities of connective tissues which can be life-threatening. Mutations in other components of TGFß signaling (receptors, Smads, Schnurri) lead to similar diseases with attenuated phenotypes relative to Marfan syndrome. In particular, mutations in TGFß receptors, most of which are clustered at the C-terminal end, result in Marfan-like (MFS-like) syndromes. Even though it was assumed that many of these receptor mutations would reduce or eliminate signaling, in many cases signaling is active. From our previous studies on receptor trafficking in C. elegans, we noticed that many of these receptor mutations that lead to Marfan-like syndromes overlap with mutations that cause mis-trafficking of the receptor, suggesting a link between Marfan-like syndromes and TGFß receptor trafficking. To test this hypothesis, we introduced three of these key MFS and MFS-like mutations into the C. elegans TGFß receptor and asked if receptor trafficking is altered. We find that in every case studied, mutated receptors mislocalize to the apical surface rather than basolateral surface of the polarized intestinal cells. Further, we find that these mutations result in longer animals, a phenotype due to over-stimulation of the nematode TGFß pathway and, importantly, indicating that function of the receptor is not abrogated in these mutants. Our nematode models of Marfan syndrome suggest that MFS and MFS-like mutations in the type II receptor lead to mis-trafficking of the receptor and possibly provides an explanation for the disease, a phenomenon which might also occur in some cancers that possess the same mutations within the type II receptor (e.g. colon cancer).


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Mutação de Sentido Incorreto , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/química , Modelos Animais de Doenças , Humanos , Domínios Proteicos , Receptor do Fator de Crescimento Transformador beta Tipo II/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
4.
Fly (Austin) ; 12(2): 105-117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30015555

RESUMO

Decapentaplegic (Dpp), the Drosophila homolog of the vertebrate bone morphogenetic protein (BMP2/4), is crucial for patterning and growth in many developmental contexts. The Dpp pathway is regulated at many different levels to exquisitely control its activity. We show that bantam (ban), a microRNA, modulates Dpp signaling activity. Over expression of ban decreases phosphorylated Mothers against decapentaplegic (Mad) levels and negatively affects Dpp pathway transcriptional target genes, while null mutant clones of ban upregulate the pathway. We provide evidence that dpp upregulates ban in the wing imaginal disc, and attenuation of Dpp signaling results in a reduction of ban expression, showing that they function in a feedback loop. Furthermore, we show that this feedback loop is important for maintaining anterior-posterior compartment boundary stability in the wing disc through regulation of optomotor blind (omb), a known target of the pathway. Our results support a model that ban functions with dpp in a negative feedback loop.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Retroalimentação Fisiológica , MicroRNAs/genética , Asas de Animais/crescimento & desenvolvimento , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Asas de Animais/metabolismo
5.
PLoS One ; 12(7): e0180681, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704415

RESUMO

Signal transduction of the conserved transforming growth factor-ß (TGFß) family signaling pathway functions through two distinct serine/threonine transmembrane receptors, the type I and type II receptors. Endocytosis orchestrates the assembly of signaling complexes by coordinating the entry of receptors with their downstream signaling mediators. Recently, we showed that the C. elegans type I bone morphogenetic protein (BMP) receptor SMA-6, part of the TGFß family, is recycled through the retromer complex while the type II receptor, DAF-4 is recycled in a retromer-independent, ARF-6 dependent manner. From genetic screens in C. elegans aimed at identifying new modifiers of BMP signaling, we reported on SMA-10, a conserved LRIG (leucine-rich and immunoglobulin-like domains) transmembrane protein. It is a positive regulator of BMP signaling that binds to the SMA-6 receptor. Here we show that the loss of sma-10 leads to aberrant endocytic trafficking of SMA-6, resulting in its accumulation in distinct intracellular endosomes including the early endosome, multivesicular bodies (MVB), and the late endosome with a reduction in signaling strength. Our studies show that trafficking defects caused by the loss of sma-10 are not universal, but affect only a limited set of receptors. Likewise, in Drosophila, we find that the fly homolog of sma-10, lambik (lbk), reduces signaling strength of the BMP pathway, consistent with its function in C. elegans and suggesting evolutionary conservation of function. Loss of sma-10 results in reduced ubiquitination of the type I receptor SMA-6, suggesting a possible mechanism for its regulation of BMP signaling.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Caenorhabditis elegans/genética , Endocitose , Endossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Transporte Proteico , Transdução de Sinais
6.
G3 (Bethesda) ; 7(1): 87-93, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27793971

RESUMO

Genome editing using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and associated nuclease (Cas9) enables specific genetic modifications, including deletions, insertions, and substitutions in numerous organisms, such as the fruit fly Drosophila melanogaster One challenge of the CRISPR/Cas9 system can be the laborious and time-consuming screening required to find CRISPR-induced modifications due to a lack of an obvious phenotype and low frequency after editing. Here we apply the successful co-CRISPR technique in Drosophila to simultaneously target a gene of interest and a marker gene, ebony, which is a recessive gene that produces dark body color and has the further advantage of not being a commonly used transgenic marker. We found that Drosophila broods containing higher numbers of CRISPR-induced ebony mutations ("jackpot" lines) are significantly enriched for indel events in a separate gene of interest, while broods with few or no ebony offspring showed few mutations in the gene of interest. Using two different PAM sites in our gene of interest, we report that ∼61% (52-70%) of flies from the ebony-enriched broods had an indel in DNA near either PAM site. Furthermore, this marker mutation system may be useful in detecting the less frequent homology-directed repair events, all of which occurred in the ebony-enriched broods. By focusing on the broods with a significant number of ebony flies, successful identification of CRISPR-induced events is much faster and more efficient. The co-CRISPR technique we present significantly improves the screening efficiency in identification of genome-editing events in Drosophila.


Assuntos
Sistemas CRISPR-Cas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Edição de Genes/métodos , Animais , Animais Geneticamente Modificados , Marcação de Genes/métodos , Mutação INDEL/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...