Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38686631

RESUMO

The ability to upright quickly and efficiently when overturned on the ground (terrestrial self-righting) is crucial for living organisms and robots. Previous studies have mapped the diverse behaviors used by various animals to self-right on different substrates, and proposed physical models to explain how body morphology can favor specific self-righting methods. However, to our knowledge, no studies have quantified and modeled all of an animal's limb motions during these complicated behaviors. Here, we studied terrestrial self-righting by immature invasive spotted lanternflies (Lycorma delicatula), an insect species that must frequently recover from being overturned after jumping and falling in its native habitat. These nymphs self-righted successfully in 92-100% of trials on three substrates with different friction and roughness, with no significant difference in the time or number of attempts required. They accomplished this using three stereotypic sequences of movements. To understand these motions, we combined 3D poses tracked on multi-view high-speed video with articulated 3D models created using photogrammetry and Blender rendering software. The results were used to calculate the mechanical properties (e.g., potential and kinetic energy, angular speed, stability margin, torque, force, etc.) of these insects during righting trials. We used an inverted physical pendulum model (a "template") to estimate the kinetic energy available in comparison to the increase in potential energy required to flip over. While these insects began righting using primarily quasistatic motions, they also used dynamic leg motions to achieve final tip-over. However, this template did not describe important features of the insect's center of mass trajectory and rotational dynamics, necessitating the use of an "anchor" model comprising the 3D rendered body model and six articulated two-segment legs to model the body's internal degrees of freedom and capture the role of the legs' contribution to inertial reorientation. This anchor elucidated the sequence of highly coordinated leg movements these insects used for propulsion, adhesion, and inertial reorientation during righting, and how they frequently pivot about a body contact point on the ground to flip upright. In the most frequently used method, diagonal rotation, these motions allowed nymphs to spin their bodies to upright with lower force with a greater stability margin compared to the other less frequently used methods. We provide a concise overview of necessary background on 3D orientation and rotational dynamics, and the resources required to apply these low-cost modeling methods to other problems in biomechanics.

2.
J Exp Biol ; 226(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37668246

RESUMO

How animals jump and land on diverse surfaces is ecologically important and relevant to bioinspired robotics. Here, we describe the jumping biomechanics of the planthopper Lycorma delicatula (spotted lanternfly), an invasive insect in the USA that jumps frequently for dispersal, locomotion and predator evasion. High-speed video was used to analyze jumping by spotted lanternfly nymphs from take-off to impact on compliant surfaces. These insects used rapid hindleg extensions to achieve high take-off speeds (2.7-3.4 m s-1) and accelerations (800-1000 m s-2), with mid-air trajectories consistent with ballistic motion without drag forces or steering. Despite rotating rapidly (5-45 Hz) about time-varying axes of rotation, they landed successfully in 58.9% of trials. They also attained the most successful impact orientation significantly more often than predicted by chance, consistent with their using attitude control. Notably, these insects were able to land successfully when impacting surfaces at all angles, pointing to the importance of collisional recovery behaviors. To further understand their rotational dynamics, we created realistic 3D rendered models of spotted lanternflies and used them to compute their mechanical properties during jumping. Computer simulations based on these models and drag torques estimated from fits to tracked data successfully predicted several features of the measured rotational kinematics. This analysis showed that the rotational inertia of spotted lanternfly nymphs is predominantly due to their legs, enabling them to use posture changes as well as drag torque to control their angular velocity, and hence their orientation, thereby facilitating predominately successful landings when jumping.

3.
PLoS One ; 18(2): e0265707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730235

RESUMO

A major ongoing research effort seeks to understand the behavior, ecology and control of the spotted lanternfly (SLF) (Lycorma delicatula), a highly invasive pest in the U.S. and South Korea. These insects undergo four nymphal stages (instars) before reaching adulthood, and appear to shift host plant preferences, feeding, dispersal and survival patterns, anti-predator behaviors, and response to traps and chemical controls with each stage. However, categorizing SLF life stage is challenging for the first three instars, which have the same coloration and shape. Here we present a dataset of body mass and length for SLF nymphs throughout two growing seasons and compare our results with previously-published ranges of instar body lengths. An analysis using two clustering methods revealed that 1st-3rd instar body mass and length fell into distinct clusters consistently between years, supporting using these metrics to stage nymphs during a single growing season. The length ranges for 2nd-4th instars agreed between years in our study, but differed from those reported by earlier studies for diverse locations, indicating that it is important to obtain these metrics relevant to a study's region for most accurate staging. We also used these data to explore the scaling of SLF instar bodies during growth. SLF nymph body mass scaled with body length varied between isometry (constant shape) and growing somewhat faster than predicted by isometry in the two years studied. Using previously published data, we also found that SLF nymph adhesive footpad area varies in direct proportion to weight, suggesting that footpad adhesion is independent of nymphal stage, while their tarsal claws display positive allometry and hence disproportionately increasing grasp (mechanical adhesion). By contrast, mouthpart dimensions are weakly correlated with body length, consistent with predictions that these features should reflect preferred host plant characteristics rather than body size. We recommend future studies use the body mass vs length growth curve as a fitness benchmark to study how SLF instar development depends on factors such as hatch date, host plant, temperature, and geographic location, to further understanding of life history patterns that help prevent further spread of this invasive insect.


Assuntos
Hemípteros , Animais , Ninfa , Insetos , Tamanho Corporal
4.
iScience ; 26(1): 105912, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691618

RESUMO

Currently known structural colors in feathers are caused by light scattering from periodic or amorphous arrangements of keratin, melanin, and air within barbs and barbules that comprise the feather vane. Structural coloration in the largest part of the feather, the central rachis, is rare. Here, we report on an investigation of the physical mechanisms underlying the only known case of structural coloration in the rachis, the blue rachis of great argus (Argusianus argus) flight feathers. Spectrophotometry revealed a reflectance peak at 344 nm that is diffuse and well matched to the blue and UV-sensitive cone sensitivities of this species' visual system. A combination of electron microscopy and optical modeling confirmed blue coloration is generated by scattering from amorphous wrinkle nanostructures 125 nm deep and 385 nm apart, a new avian coloration mechanism. These findings have implications for understanding how novel courtship phenotypes arise through evolutionary modification of existing ontogenetic templates.

5.
J R Soc Interface ; 18(181): 20210367, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34376093

RESUMO

Unlike large animals, insects and other very small animals are so unsusceptible to impact-related injuries that they can use falling for dispersal and predator evasion. Reorienting to land upright can mitigate lost access to resources and predation risk. Such behaviours are critical for the spotted lanternfly (SLF) (Lycorma delicatula), an invasive, destructive insect pest spreading rapidly in the USA. High-speed video of SLF nymphs released under different conditions showed that these insects self-right using both active midair righting motions previously reported for other insects and novel post-impact mechanisms that take advantage of their ability to experience near-total energy loss on impact. Unlike during terrestrial self-righting, in which an animal initially at rest on its back uses appendage motions to flip over, SLF nymphs impacted the surface at varying angles and then self-righted during the rebound using coordinated body rotations, foot-substrate adhesion and active leg motions. These previously unreported strategies were found to promote disproportionately upright, secure landings on both hard, flat surfaces and tilted, compliant host plant leaves. Our results highlight the importance of examining biomechanical phenomena in ecologically relevant contexts, and show that, for small animals, the post-impact bounce period can be critical for achieving an upright landing.


Assuntos
Hemípteros , Animais , Extremidades , Insetos , Movimento
6.
PLoS One ; 14(4): e0210924, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017903

RESUMO

Colorful feathers have long been assumed to be conspicuous to predators, and hence likely to incur costs due to enhanced predation risk. However, many mammals that prey on birds have dichromatic visual systems with only two types of color-sensitive visual receptors, rather than the three and four photoreceptors characteristic of humans and most birds, respectively. Here, we use a combination of multispectral imaging, reflectance spectroscopy, color vision modelling and visual texture analysis to compare the visual signals available to conspecifics and to mammalian predators from multicolored feathers from the Indian peacock (Pavo cristatus), as well as red and yellow parrot feathers. We also model the effects of distance-dependent blurring due to visual acuity. When viewed by birds against green vegetation, most of the feathers studied are estimated to have color and brightness contrasts similar to values previously found for ripe fruit. On the other hand, for dichromat mammalian predators, visual contrasts for these feathers were only weakly detectable and often below detection thresholds for typical viewing distances. We also show that for dichromat mammal vision models, the peacock's train has below-detection threshold color and brightness contrasts and visual textures that match various foliage backgrounds. These findings are consistent with many feathers of similar hue to those studied here being inconspicuous, and in some cases potentially cryptic, in the eyes of common mammalian predators of adult birds. Given that birds perform many conspicuous motions and behaviors, this study suggests that mammalian predators are more likely to use other sensory modalities (e.g., motion detection, hearing, and olfaction), rather than color vision, to detect avian prey. This suggests new directions for future behavioral studies and emphasizes the importance of understanding the influence of the sensory ecology of predators in the evolution of animal coloration.


Assuntos
Visão de Cores/fisiologia , Plumas/fisiologia , Furões/fisiologia , Pigmentação/fisiologia , Comportamento Predatório/fisiologia , Animais , Evolução Biológica , Mimetismo Biológico/fisiologia , Aves/fisiologia , Cor , Sinais (Psicologia) , Feminino , Masculino , Modelos Biológicos , Células Fotorreceptoras de Vertebrados/fisiologia , Fatores Sexuais , Percepção Visual/fisiologia
7.
PLoS One ; 13(11): e0207247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485316

RESUMO

Feathers act as vibrotactile sensors that can detect mechanical stimuli during avian flight and tactile navigation, suggesting that they may also detect stimuli during social displays. In this study, we present the first measurements of the biomechanical properties of the feather crests found on the heads of birds, with an emphasis on those from the Indian peafowl (Pavo cristatus). We show that in peafowl these crest feathers are coupled to filoplumes, small feathers known to function as mechanosensors. We also determined that airborne stimuli with the frequencies used during peafowl courtship and social displays couple efficiently via resonance to the vibrational response of their feather crests. Specifically, vibrational measurements showed that although different types of feathers have a wide range of fundamental resonant frequencies, peafowl crests are driven near-optimally by the shaking frequencies used by peacocks performing train-rattling displays. Peafowl crests were also driven to vibrate near resonance in a playback experiment that mimicked the effect of these mechanical sounds in the acoustic very near-field, reproducing the way peafowl displays are experienced at distances ≤ 1.5m in vivo. When peacock wing-shaking courtship behaviour was simulated in the laboratory, the resulting airflow excited measurable vibrations of crest feathers. These results demonstrate that peafowl crests have mechanical properties that allow them to respond to airborne stimuli at the frequencies typical of this species' social displays. This suggests a new hypothesis that mechanosensory stimuli could complement acoustic and visual perception and/or proprioception of social displays in peafowl and other bird species. We suggest behavioral studies to explore these ideas and their functional implications.


Assuntos
Plumas/fisiologia , Galliformes/fisiologia , Estimulação Acústica , Acústica , Animais , Comportamento Animal , Fenômenos Biomecânicos , Corte/psicologia , Plumas/anatomia & histologia , Feminino , Galliformes/anatomia & histologia , Masculino , Mecanorreceptores/fisiologia , Comportamento Social , Som , Vibração , Gravação em Vídeo
8.
J Exp Biol ; 218(Pt 2): 212-22, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25609783

RESUMO

Video filmed by a camera mounted on the head of a Northern Goshawk (Accipiter gentilis) was used to study how the raptor used visual guidance to pursue prey and land on perches. A combination of novel image analysis methods and numerical simulations of mathematical pursuit models was used to determine the goshawk's pursuit strategy. The goshawk flew to intercept targets by fixing the prey at a constant visual angle, using classical pursuit for stationary prey, lures or perches, and usually using constant absolute target direction (CATD) for moving prey. Visual fixation was better maintained along the horizontal than vertical direction. In some cases, we observed oscillations in the visual fix on the prey, suggesting that the goshawk used finite-feedback steering. Video filmed from the ground gave similar results. In most cases, it showed goshawks intercepting prey using a trajectory consistent with CATD, then turning rapidly to attack by classical pursuit; in a few cases, it showed them using curving non-CATD trajectories. Analysis of the prey's evasive tactics indicated that only sharp sideways turns caused the goshawk to lose visual fixation on the prey, supporting a sensory basis for the surprising frequency and effectiveness of this tactic found by previous studies. The dynamics of the prey's looming image also suggested that the goshawk used a tau-based interception strategy. We interpret these results in the context of a concise review of pursuit-evasion in biology, and conjecture that some prey deimatic 'startle' displays may exploit tau-based interception.


Assuntos
Falconiformes/fisiologia , Voo Animal , Comportamento Predatório , Animais , Feminino , Gravação em Vídeo , Visão Ocular
9.
J Exp Biol ; 217(Pt 2): 225-34, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431144

RESUMO

This study reports on experiments on falcons wearing miniature videocameras mounted on their backs or heads while pursuing flying prey. Videos of hunts by a gyrfalcon (Falco rusticolus), gyrfalcon (F. rusticolus)/Saker falcon (F. cherrug) hybrids and peregrine falcons (F. peregrinus) were analyzed to determine apparent prey positions on their visual fields during pursuits. These video data were then interpreted using computer simulations of pursuit steering laws observed in insects and mammals. A comparison of the empirical and modeling data indicates that falcons use cues due to the apparent motion of prey on the falcon's visual field to track and capture flying prey via a form of motion camouflage. The falcons also were found to maintain their prey's image at visual angles consistent with using their shallow fovea. These results should prove relevant for understanding the co-evolution of pursuit and evasion, as well as the development of computer models of predation and the integration of sensory and locomotion systems in biomimetic robots.


Assuntos
Falconiformes/fisiologia , Comportamento Predatório/fisiologia , Animais , Sinais (Psicologia) , Masculino , Movimento (Física) , Visão Ocular
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 1): 021911, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22463248

RESUMO

Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Fontes Termais/microbiologia , Modelos Biológicos , Simulação por Computador
11.
Anal Biochem ; 346(2): 189-200, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16213459

RESUMO

We describe a quantitative analysis of Acanthamoeba castellanii myosin II rod domain images collected from atomic force microscope experiments. These images reveal that the rod domain forms a novel filament structure, most likely requiring unusual head-to-tail interactions. Similar filaments are seen also in negatively stained electron microscopy images. Truncated myosins from Acanthamoeba and other model organisms have been visualized before, revealing laterally associated bipolar minifilaments. In contrast, the filament structures that we observe are dominated by axial rather than lateral polymerization. The unusually small features in this structure (1-5 nm) required the development of quantitative and statistical techniques for filament image analysis. These techniques enhance the extraction of features that hitherto have been difficult to ascertain from more qualitative imaging approaches. The heights of the filaments are observed to have a bimodal distribution consistent with the diameters of a single rod domain and a pair of close-packed rod domains. Further quantitative analysis indicates that in-plane association is limited to at most a pair of rod domains. Taken together, this implies that the filaments contain no more than four rod domains laterally associated with one another, somewhat less than that seen in bipolar minifilaments. Analysis of images of the filaments decorated with an anti-FLAG antibody reveals head-to-tail association with mean distances between the antibodies of 75 +/- 15 nm. We consider a set of molecular models to help interpret possible structures of the filaments.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Microscopia de Força Atômica/métodos , Miosina Tipo II/química , Miosina Tipo II/ultraestrutura , Acanthamoeba castellanii , Animais , Peso Molecular , Estrutura Terciária de Proteína , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...