Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(27): 5417-5424, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946480

RESUMO

The fluid-fluid interface is a complex environment for a floating object where the statics and dynamics may be governed by capillarity, gravity, inertia, and other external body forces. Yet, the alignment of these forces in intricate ways may result in beautiful pattern formation and self-assembly of these objects, as in the case of crystalline order observed with bubble rafts or colloidal particles. While interfacial self-assembly has been explored widely, controlled manipulation of floating objects, e.g. drops, at the fluid-fluid interface still remains a challenge largely unexplored. In this work, we reveal the self-assembly and manipulation of water drops floating at an oil-air interface. We show that the assembly occurs due to electrostatic interactions between the drops and their environment. We highlight the role of the boundary surrounding the system by showing that even drops with a net zero electric charge can self-assemble under certain conditions. Using experiments and theory, we show that the depth of the oil bath plays an important role in setting the distance between the self-assembled drops. Furthermore, we demonstrate ways to manipulate the drops actively and passively at the interface.

2.
Phys Rev Lett ; 129(14): 144501, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240413

RESUMO

Coalescence and breakup of drops are classic problems in fluid physics that often involve self-similarity and singularity formation. While the coalescence of suspended drops is axisymmetric, the coalescence of drops on a substrate is inherently three-dimensional. Yet, studies so far have only considered this problem in two dimensions. In this Letter, we use interferometry to reveal the three-dimensional shape of the interface as two drops coalescence on a substrate. We unify the known scaling laws in this problem within the thin-film approximation and find a three-dimensional self-similarity that enables us to describe the anisotropic shape of the dynamic interface with a universal curve.

3.
Langmuir ; 35(39): 12773-12781, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498639

RESUMO

Inkjet printing of biopolymer droplets is gaining popularity because of its potential applications in regenerative medicine, particularly the fabrication of tissue-regenerative scaffolds. The quality of bioprinting, which affects cellular behaviors and the subsequent tissue formation, is determined by the solvent evaporation and deposition processes of biopolymer droplets, during which instantaneous local viscosity and surface tension changes occur because of the redistribution of the biopolymer inside the drop. Such dynamics is complex and not well understood. Most biopolymer inks also contain multiple solvents of distinct evaporation rates, further complicating the system dynamics. Using high-speed interferometry, we directly observe in real time the instantaneous drop shape of inkjet-printed picoliter gelatin drops containing glycerol and water. It is observed that, for bisolvent gelatin drops with surfactants, highly viscous gelatin and glycerol accumulated near the pinned contact line at an early stage suppress the evaporation-driven outward flow and create a stagnation zone near the contact line region. Lower surface tension at the contact line, because of its high local surfactant concentration, as compared to the drop apex induces a strong Marangoni recirculation, which in conjunction with a stagnation zone in the contact line region causes the instantaneous drop shape to transition from a spherical cap to a volcano shape during evaporation and resulting in a volcano-like deposition profile. In contrast, the suppressed evaporation outward flow together with a weak Marangoni flow leads to a domelike deposition for the case without surfactant. The role of surfactant in polymer drop deposition with water-only solvent is also investigated and compared against that of bisolvent drops. For the single-solvent case, the deposition profile is found to shift from a coffee-eye shape in the presence of surfactant to a uniform deposition without surfactant. The results reveal new insight into the complex role surfactant plays during polymer drop evaporation and deposition processes.

4.
Soft Matter ; 14(47): 9599-9608, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30457136

RESUMO

Contact line dynamics is crucial in determining the deposition patterns of evaporating colloidal droplets. Using high-speed interferometry, we directly observe the stick-slip motion of the contact line in situ and are able to resolve the instantaneous shape of the inkjet-printed, evaporating pico-liter drops containing nanoparticles of varying wettability. Integrated with post-mortem optical profilometry of the deposition patterns, the instantaneous particle volume fraction and hence the particle deposition rate can be determined. The results show that the stick-slip motion of the contact line is a strong function of the particle wettability. While the stick-slip motion is observed for nanoparticles that are less hydrophilic (i.e., particle contact angle θ ≈ 74° at the water-air interface), which results in a multiring deposition, a continuous receding of the contact line is observed for more hydrophilic nanoparticles (i.e., θ ≈ 34°), which leaves a single-ring pattern. A model is developed to predict the number of particles required to pin the contact line based on the force balance of the hydrodynamic drag, interparticle interactions, and surface tension acting on the particles near the contact line with varying particle wettability. A three-fold increase in the number of particles required for pinning is predicted when the particle wettability increases from the wetting angle of θ ≈ 74° to θ ≈ 34°. This finding explains why particles with greater wettability form a single-ring pattern and those with lower wettability form a multi-ring pattern. In addition, the particle deposition rate is found to depend on the particle wettability and vary with time.

5.
Langmuir ; 34(17): 4962-4969, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620373

RESUMO

Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...