Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 10(1): 282, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937866

RESUMO

Rubrobacter xylanophilus rhodopsin (RxR) is a phylogenetically distinct and thermally stable seven-transmembrane protein that functions as a light-driven proton (H+) pump with the chromophore retinal. To characterize its vectorial proton transport mechanism, mutational and theoretical investigations were performed for carboxylates in the transmembrane region of RxR and the sequential proton transport steps were revealed as follows: (i) a proton of the retinylidene Schiff base (Lys209) is transferred to the counterion Asp74 upon formation of the blue-shifted M-intermediate in collaboration with Asp205, and simultaneously, a respective proton is released from the proton releasing group (Glu187/Glu197) to the extracellular side, (ii) a proton of Asp85 is transferred to the Schiff base during M-decay, (iii) a proton is taken up from the intracellular side to Asp85 during decay of the red-shifted O-intermediate. This ion transport mechanism of RxR provides valuable information to understand other ion transporters since carboxylates are generally essential for their functions.


Assuntos
Actinobacteria/metabolismo , Rodopsinas Microbianas/metabolismo , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Prótons , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Cloreto de Sódio/química
3.
J Phys Chem B ; 124(6): 990-1000, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31955569

RESUMO

We often encounter a case where two proteins, whose amino-acid sequences are similar, are quite different with regard to the thermostability. As a striking example, we consider the two seven-transmembrane proteins: recently discovered Rubrobacter xylanophilus rhodopsin (RxR) and long-known bacteriorhodopsin from Halobacterium salinarum (HsBR). They commonly function as a light-driven proton pump across the membrane. Though their sequence similarity and identity are ∼71 and ∼45%, respectively, RxR is much more thermostable than HsBR. In this study, we solve the three-dimensional structure of RxR using X-ray crystallography and find that the backbone structures of RxR and HsBR are surprisingly similar to each other: The root-mean-square deviation for the two structures calculated using the backbone Cα atoms of the seven helices is only 0.86 Å, which makes the large stability difference more puzzling. We calculate the thermostability measure and its energetic and entropic components for RxR and HsBR using our recently developed statistical-mechanical theory. The same type of calculation is independently performed for the portions playing essential roles in the proton-pumping function, helices 3 and 7, and their structural properties are related to the probable roles of water molecules in the proton-transporting mechanism. We succeed in elucidating how RxR realizes its exceptionally high stability with the original function being retained. This study provides an important first step toward the establishment of a method correlating microscopic, geometric characteristics of a protein with its thermodynamic properties and enhancing the thermostability through amino-acid mutations without vitiating the original function.


Assuntos
Actinobacteria/química , Halobacterium salinarum/química , Bombas de Próton/química , Rodopsinas Microbianas/química , Termodinâmica , Cristalografia por Raios X , Modelos Moleculares , Dobramento de Proteína , Solventes/química
4.
Sci Rep ; 7: 44427, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28290523

RESUMO

Rhodopsins are proteins that contain seven transmembrane domains with a chromophore retinal and that function as photoreceptors for light-energy conversion and light-signal transduction in a wide variety of organisms. Here we characterized a phylogenetically distinctive new rhodopsin from the thermophilic eubacterium Rubrobacter xylanophilus DSM 9941T that was isolated from thermally polluted water. Although R. xylanophilus rhodopsin (RxR) is from Actinobacteria, it is located between eukaryotic and archaeal rhodopsins in the phylogenetic tree. Escherichia coli cells expressing RxR showed a light-induced decrease in environmental pH and inhibition by a protonophore, indicating that it works as a light-driven outward proton pump. We characterized purified RxR spectroscopically, and showed that it has an absorption maximum at 541 nm and binds nearly 100% all-trans retinal. The pKa values for the protonated retinal Schiff base and its counterion were estimated to be 10.7 and 1.3, respectively. Time-resolved flash-photolysis experiments revealed the formation of a red-shifted intermediate. Of note, RxR showed an extremely high thermal stability in comparison with other proton pumping rhodopsins such as thermophilic rhodopsin TR (by 16-times) and bacteriorhodopsin from Halobacterium salinarum (HsBR, by 4-times).


Assuntos
Filogenia , Bombas de Próton/genética , Rodopsinas Microbianas/química , Actinobacteria/química , Actinobacteria/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Luz , Transdução de Sinal Luminoso , Bombas de Próton/química , Rodopsinas Microbianas/genética , Bases de Schiff
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...