Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Biomolecules ; 14(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927120

RESUMO

Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.


Assuntos
Receptores de Calcitriol , Vitamina D3 24-Hidroxilase , Vitamina D , Animais , Vitamina D/metabolismo , Humanos , Vitamina D3 24-Hidroxilase/metabolismo , Vitamina D3 24-Hidroxilase/genética , Camundongos , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Mucosa Intestinal/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Intestinos/enzimologia , Calcitriol/metabolismo
2.
Free Radic Biol Med ; 206: 74-82, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391098

RESUMO

The SARS-CoV-2 main protease is an essential molecule for viral replication and is often targeted by medications to treat the infection. In this study, we investigated the possible inhibitory action of endogenous quinones on the enzyme. Recombinant SARS-CoV-2 main protease was exposed to tryptamine-4,5-dione (TD) or quinone from 5-hydroxyindoleacetic acid (Q5HIAA). As a result, the protease activity was considerably decreased in a dose-dependent manner. The IC50 values of the quinones toward the enzyme were approximately 0.28 µM (TD) and 0.49 µM (Q5HIAA). Blot analyses using specific antibodies to quinone-modified proteins revealed that quinones were adducted to the enzyme at concentrations as low as 0.12 µM. Intact mass analyses showed that one or two quinone molecules were covalently adducted onto the main protease. Chymotrypsin-digested main protease analyses revealed that the quinones bind to thiol residues at the enzyme's active site. When TD or Q5HIAA were exposed to cultured cells expressing the viral enzyme, quinone-modified enzyme was identified in the cell lysate, suggesting that even extracellularly generated quinones could react with the viral enzyme expressed in an infected cell. Thus, these endogenous quinones could act as inhibitors of the viral enzyme.


Assuntos
COVID-19 , Quinonas , Humanos , Quinonas/química , Serotonina/farmacologia , SARS-CoV-2 , Proteases 3C de Coronavírus , Células Cultivadas , Inibidores de Proteases
3.
J Med Invest ; 69(3.4): 173-179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36244766

RESUMO

Phosphate (Pi)-containing food additives are used in several forms. Polyphosphate (PPi) salt has more harmful effects than monophosphate (MPi) salt on bone physiology and renal function. This study aimed to analyze the levels of parathyroid hormone PTH and fibroblast growth factor 23 (FGF23) and the expression of renal / intestinal Pi transport-related molecules in mice fed with an MPi or PPi diet. There were no significant differences in plasma Pi concentration and fecal Pi excretion levels between mice fed with the high-MPi and PPi diet. However, more severe tubular dilatation, interstitial fibrosis, and calcification were observed in the kidneys of mice fed with the high PPi diet versus the MPi diet. Furthermore, there was a significant increase in serum FGF23 levels and a decrease in renal phosphate transporter protein expression in mice fed with the PPi diet versus the MPi diet. Furthermore, the high MPi diet was associated with significantly suppressed expression and activity of intestinal alkaline phosphatase protein. In summary, PPi has a more severe effect on renal damage than MPi, as well as induces more FGF23 secretion. Excess FGF23 may be more involved in inflammation, fibrosis, and calcification in the kidney. J. Med. Invest. 69 : 173-179, August, 2022.


Assuntos
Fosfatase Alcalina , Polifosfatos , Animais , Camundongos , Fosfatase Alcalina/metabolismo , Dieta , Fatores de Crescimento de Fibroblastos , Fibrose , Aditivos Alimentares/metabolismo , Rim/metabolismo , Hormônio Paratireóideo/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Polifosfatos/metabolismo
4.
PLoS One ; 17(10): e0275683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264926

RESUMO

Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders and affects approximately 4% of the global population. The diagnosis of IBS can be made based on symptoms using the validated Rome criteria and ruling out commonly occurring organic diseases. Although biomarkers exist for "IBS mimickers" such as celiac disease and inflammatory bowel disease (IBD), no such test exists for IBS. DNA microarrays of colonic tissue have been used to identify disease-associated variants in other gastrointestinal (GI) disorders. In this study, our objective was to identify biomarkers and unique gene expression patterns that may define the pathological state of IBS. Mucosal tissue samples were collected from the sigmoid colon of 29 participants (11 IBS and 18 healthy controls). DNA microarray analysis was used to assess gene expression profiling. Extraction and purification of RNA were then performed and used to synthesize cDNA. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was employed to identify differentially expressed genes in patients diagnosed with IBS compared to healthy, non-IBS patient-derived cDNA. Additional testing probed vitamin D-mediated regulation of select genes associated with serotonergic metabolism. DNA microarray analyses led to the identification of 858 differentially expressed genes that may characterize the IBS pathological state. After screening a series of genes using a combination of gene ontological analysis and RT-qPCR, this spectrum of potential IBS biomarkers was narrowed to 23 genes, some of which are regulated by vitamin D. Seven putative IBS biomarkers, including genes involved in serotonin metabolism, were identified. This work further supports the hypothesis that IBS pathophysiology is evident within the human transcriptome and that vitamin D modulates differential expression of genes in IBS patients. This suggests that IBS pathophysiology may also involve vitamin D deficiency and/or an irregularity in serotonin metabolism.


Assuntos
Síndrome do Intestino Irritável , Humanos , Biomarcadores/metabolismo , Diarreia/patologia , DNA Complementar/metabolismo , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/diagnóstico , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/complicações , RNA/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Serotonina/genética , Serotonina/metabolismo , Transcriptoma , Triptofano Hidroxilase/genética , Vitamina D/metabolismo , Vitaminas/metabolismo
5.
Sci Rep ; 12(1): 6353, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428804

RESUMO

Renal type II sodium-dependent inorganic phosphate (Pi) transporters NaPi2a and NaPi2c cooperate with other organs to strictly regulate the plasma Pi concentration. A high Pi load induces expression and secretion of the phosphaturic hormones parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) that enhance urinary Pi excretion and prevent the onset of hyperphosphatemia. How FGF23 secretion from bone is increased by a high Pi load and the setpoint of the plasma Pi concentration, however, are unclear. Here, we investigated the role of Transmembrane protein 174 (Tmem174) and observed evidence for gene co-expression networks in NaPi2a and NaPi2c function. Tmem174 is localized in the renal proximal tubules and interacts with NaPi2a, but not NaPi2c. In Tmem174-knockout (KO) mice, the serum FGF23 concentration was markedly increased but increased Pi excretion and hypophosphatemia were not observed. In addition, Tmem174-KO mice exhibit reduced NaPi2a responsiveness to FGF23 and PTH administration. Furthermore, a dietary Pi load causes marked hyperphosphatemia and abnormal NaPi2a regulation in Tmem174-KO mice. Thus, Tmem174 is thought to be associated with FGF23 induction in bones and the regulation of NaPi2a to prevent an increase in the plasma Pi concentration due to a high Pi load and kidney injury.


Assuntos
Hiperfosfatemia , Hipofosfatemia , Proteínas de Membrana , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Hipofosfatemia/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Hormônio Paratireóideo , Proteínas de Transporte de Fosfato , Fosfatos/metabolismo
6.
J Pharm Health Care Sci ; 7(1): 34, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593039

RESUMO

BACKGROUND: Drug overdose accounts for most of the admissions to the emergency department. Prescription drugs, most of which are psychotropic medications, are often misused for drug overdose. The purpose of this study was to investigate the association between overdose in patients transported with disorders of consciousness and psychotropic medications administered prior to transport, so as to enable quick differentiation of drug overdose patients from patients with disorders of consciousness. METHODS: We evaluated 222 patients transported to the Advanced Critical Care Center of Teikyo University Hospital due to disorders of consciousness. The patients were categorized into two groups: overdose group (n = 128) and control group with other disorders of consciousness (n = 94). Logistic regression models were used to assess the association between disorders of consciousness due to drug overdose and psychotropic drugs prescribed before emergency transportation based on sex and age. RESULTS: According to multivariate logistic regression analysis, only female sex (odds ratio [OR] 4.54, 95% confidence interval [CI] 2.43-8.05, P < 0.0001) was associated with overall overdose. Results from the univariate logistic regression analysis showed that in the group of patients aged 40-50 years, female sex (OR 4.36, 95% CI; 1.54-12.4, P = 0.006) and the use of psychotropic drugs (OR 5.05, 95% CI; 1.75-14.6, P = 0.003), benzodiazepines (OR 4.64, 95% CI; 1.61-13.4, P < 0.05), antidepressants (OR 11.4, 95% CI; 2.35-55.8, P = 0.003), and anticonvulsants (OR 4.46, 95% CI; 1.11-17.9, P = 0.035) were associated with overdose. According to multivariate logistic regression analysis, female sex (OR 4.44, 95% CI; 1.37-14.3, P = 0.013) and antidepressants (OR 7.95, 95% CI; 1.21-52.1, P = 0.031) were associated with overdose patients aged 40-50 years. CONCLUSIONS: As a reference in distinguishing overdose in women in their 40s and 50s who present with impaired consciousness, attention may need to be paid to the type of psychotropic drug used, especially antidepressants.

7.
J Clin Biochem Nutr ; 69(2): 122-130, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34616103

RESUMO

We recently reported that dietary cystine maintained plasma mercaptalbumin levels in rats fed low-protein diets. The present study aimed to compare the influence of low-protein diets supplemented with cystine and methionine, which is another sulfur amino acid, on plasma mercaptalbumin levels in rats. Male Sprague-Dawley rats were fed a 20% soy protein isolate diet (control group), 5% soy protein isolate diet (low-protein group) or 5% soy protein isolate diet supplemented with either methionine (low-protein + Met group) or cystine (low-protein + Cyss group) for 1 week. The percentage of mercaptalbumin within total plasma albumin of the low-protein + Met group was significantly lower than that of the control and low-protein + Cyss groups. No significant differences in the mRNA levels of tumor necrosis factor-α, interleukin-6, interleukin-1ß, and cyclooxygenase 2 in blood cells were observed between the low-protein + Met and low-protein + Cyss groups. Treatment with buthionine-(S,R)-sulfoximine, an inhibitor of glutathione synthesis, did not influence the percentage of mercaptalbumin within total plasma albumin in rats fed the low-protein diet supplemented with cystine. These results suggest that supplementation with cystine may be more effective than that with methionine to maintain plasma mercaptalbumin levels in rats with protein malnutrition. Cystine might regulate plasma mercaptalbumin levels via the glutathione-independent pathway.

8.
J Phys Ther Sci ; 33(5): 417-422, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34083881

RESUMO

[Purpose] Recently, a photo-based smartphone application for angle measurement-"Grid line imaging application Professional"-was developed to evaluate joint disease treatments. The aim of this study was to determine the accuracy and reliability of the application. [Participants and Methods] We measured the knee joint of a mannequin using an application and a universal goniometer. Twelve examiners measured eight knee joints of mannequins at different arbitrary angles using the application and a universal goniometer. Correlations between the application and universal goniometer measurements were examined using scatter plots and correlation coefficients. Systematic errors of the application were visually confirmed using the Bland-Altman method. Intra-class correlation coefficients were used to evaluate the inter-examiner reliability of the application. [Results] The application and universal goniometer measurements showed a good correlation (r=0.99) and no systematic error. The intra-class correlation coefficient for inter-examiner reliability was 0.999. Furthermore, to evaluate intra-examiner reliability, six examiners measured six different knee joints twice using the application on a 2-day interval. The intra-class correlation coefficient for intra-examiner reliability was 0.982. [Conclusion] The accuracy of the application was equivalent to that of a universal goniometer, and both the inter- and intra-examiner reliabilities of the application were almost perfect.

9.
ACS Chem Neurosci ; 12(5): 857-871, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33570383

RESUMO

There is considerable interest in identifying effective and safe drugs for neurodegenerative disorders. Cell culture and animal model work have demonstrated that modulating gene expression through RXR-mediated pathways may mitigate or reverse cognitive decline. However, because RXR is a dimeric partner for several transcription factors, activating off-target transcription is a concern with RXR ligands (rexinoids). This off-target gene modulation leads to unwanted side effects that can include low thyroid function and significant hyperlipidemia. There is a need to develop rexinoids that have binding specificity for subsets of RXR heterodimers, to drive desired gene modulation, but that do not induce spurious effects. Herein, we describe experiments in which we analyze a series of novel and previously reported rexinoids for their ability to modulate specific gene pathways implicated in neurodegenerative disorders employing a U87 cell culture model. We demonstrate that, compared to the FDA-approved rexinoid bexarotene (1), several of these compounds are equally or more effective at stimulating gene expression via LXREs or Nurr1/NBREs and are superior at inducing ApoE and/or tyrosine hydroxylase (TH) gene and protein expression, including analogs 8, 9, 13, 14, 20, 23, and 24, suggesting a possible therapeutic role for these compounds in Alzheimer's or Parkinson's disease (PD). A subset of these potent RXR agonists can synergize with a presumed Nurr1 ligand and antimalarial drug (amodiaquine) to further enhance Nurr1/NBREs-directed transcription. This novel discovery has potential clinical implications for treatment of PD since it suggests that the combination of an RXR agonist and a Nurr1 ligand can significantly enhance RXR-Nurr1 heterodimer activity and drive enhanced therapeutic expression of the TH gene to increase endogenous synthesis of dopamine. These data indicate that is it possible and prudent to develop novel rexinoids for testing of gene expression and side effect profiles for use in potential treatment of neurodegenerative disorders, as individual rexinoids can have markedly different gene expression profiles but similar structures.


Assuntos
Apolipoproteínas E , Glioblastoma , Receptores X de Retinoides/agonistas , Tirosina 3-Mono-Oxigenase , Linhagem Celular Tumoral , Humanos , Transdução de Sinais
10.
Gan To Kagaku Ryoho ; 48(13): 2098-2102, 2021 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-35045505

RESUMO

INTRODUCTION: Pedicled flaps are used in orofacial defect reconstruction in older patients and patients with underlying diseases. The submental island flap(SIF)is one type of cervical pedicled flap; however, the modified submental island flap (MSIF), which includes mylohyoid muscle, is a simpler and safer type. Here, we report a clinical study of orofacial defect reconstruction using the MSIF following oral cancer resection. PATIENTS AND METHODS: From January 2019 to December 2020, we retrospectively examined 10 cases of reconstruction using the MSIF following oral squamous cell carcinoma resection. RESULTS: The study population consisted of 7 men and 3 women with a mean age of 76.0(66-88)years. The primary sites were lower gingiva(n=5), tongue(n=3), and buccal mucosa in(n=2). Surgical procedures included marginal mandibulectomy( n=3), segmental mandibulectomy(n=1), partial glossectomy(n=2), hemiglossectomy(n=1), buccal mucosa resection(n=2), and combined partial glossectomy and segmental mandibulectomy(n=1). The average flap size was 61.4×36.0 mm. The average time of flap elevation was 32.4(23-50)minutes. During orofacial surgery using the MSIF, organs adjacent to the primary site could also be reconstructed. There were no complications in any patients. CONCLUSION: The MSIF is useful for orofacial defect reconstruction in older patients and patients with underlying diseases.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Procedimentos de Cirurgia Plástica , Idoso , Carcinoma de Células Escamosas/cirurgia , Feminino , Humanos , Masculino , Neoplasias Bucais/cirurgia , Estudos Retrospectivos , Retalhos Cirúrgicos , Resultado do Tratamento
11.
Yakugaku Zasshi ; 140(6): 819-825, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32475932

RESUMO

The quality of chest compression affects survival after sudden cardiac arrest, particularly when it occurs out of hospital. Pharmacy students should acquire basic life support skills as part of the model core curriculum of pharmacy education. Here, we trained first-year students at the Faculty of Pharmacy to deliver cardiopulmonary resuscitation and used a manikin with a real-time feedback device that quantified chest compression skills. Students were classified into shallow compressions (SC; <50 mm) and deep compressions (DC; ≥50 mm) groups based on the depth of chest compressions measured prior to training. After training, the mean compression depth (mm) was significantly shallower for the SC, than the DC group and many students in the SC group did not reach a depth of 50 mm. Similarly, students were classified into slow compression rate (SR; ≤120/min) and rapid compression rate (RR; >120/min) groups based on the results of training in the rate of chest compressions. Significant differences in mean compression rates were not found between the groups. However, correct compression rate (%), the percentage of maintaining 100-120 compression/min was significantly higher in the SR, than in the RR group. Chest compression rates correlated with compression depth, and chest compression tended to be too shallow in group that was too fast. The quality of chest compression might be improved by delivering chest compressions at a constant rate within the recommended range.


Assuntos
Reanimação Cardiopulmonar/educação , Reanimação Cardiopulmonar/métodos , Educação em Farmácia/métodos , Avaliação Educacional/métodos , Escolaridade , Feedback Formativo , Estudantes de Farmácia , Currículo , Morte Súbita Cardíaca/prevenção & controle , Humanos , Manequins
12.
Physiol Rep ; 8(3): e14324, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32026654

RESUMO

SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho-/- /Npt2c-/- (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho-/- (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho-/- /Npt2a-/- mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice.


Assuntos
Envelhecimento/metabolismo , Glucuronidase/metabolismo , Fosfatos/sangue , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Animais , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/genética , Homeostase , Absorção Intestinal , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Rim/crescimento & desenvolvimento , Rim/metabolismo , Proteínas Klotho , Masculino , Camundongos , Fosfatos/metabolismo , Reabsorção Renal , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética
13.
J Invest Surg ; 33(7): 644-652, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30644798

RESUMO

Purpose: We investigated the feasibility of isolated medial orbital wall fracture reconstruction using an unsintered hydroxyapatite particles/poly L-lactide (u-HA/PLLA) sheet implant with the assistance of intraoperative navigation via the transcaruncular approach. Patients and methods: Ten consecutive patients (5 males and 5 females; mean age, 57.5 years) were included based on the clinical and imaging criteria. All patients underwent surgical treatment of the isolated medial orbital wall fracture using transcaruncular incision and the u-HA/PLLA implant under navigation. The follow-up time was greater than 6 months. Preoperative and postoperative clinical data regarding the presence of diplopia, eye motility restriction, and enophthalmos were assessed. The orbital volumes of the injured and uninjured orbit were also evaluated using computed tomography images. Results: All patients had improved ophthalmologic functional and esthetic outcomes and were successfully treated without any long-term complications arising during follow-up. There was a significant difference between the preoperative and postoperative injured orbits due to herniation of the orbital contents. Moreover, the orbital volume of the postoperative injured side following surgery was the same as that of the unaffected side, indicating that anatomically good reconstruction had been obtained. Conclusions: Surgical treatment using the transcaruncular approach and u-HA/PLLA materials with intraoperative navigation is a safe, promising, and effective technique for isolated medial orbital wall fracture reconstruction.


Assuntos
Enoftalmia/cirurgia , Fraturas Orbitárias/cirurgia , Procedimentos Ortopédicos/métodos , Procedimentos de Cirurgia Plástica/métodos , Cirurgia Assistida por Computador/métodos , Adolescente , Idoso , Idoso de 80 Anos ou mais , Criança , Durapatita , Enoftalmia/diagnóstico , Enoftalmia/etiologia , Estética , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Órbita/diagnóstico por imagem , Órbita/lesões , Órbita/cirurgia , Fraturas Orbitárias/complicações , Fraturas Orbitárias/diagnóstico , Procedimentos Ortopédicos/efeitos adversos , Procedimentos Ortopédicos/instrumentação , Poliésteres , Próteses e Implantes , Procedimentos de Cirurgia Plástica/efeitos adversos , Procedimentos de Cirurgia Plástica/instrumentação , Cirurgia Assistida por Computador/efeitos adversos , Cirurgia Assistida por Computador/instrumentação , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Adulto Jovem
14.
Clin Exp Nephrol ; 23(7): 898-907, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30895530

RESUMO

BACKGROUND: Injection of parathyroid hormone (PTH) rapidly stimulates renal Pi excretion, in part by downregulating NaPi-IIa (Npt2a/SLC34A1) and NaPi-IIc (Npt2c/SLC34A3) transporters. The mechanisms underlying the effects of PTH on NaPi-IIc are not fully elucidated. METHODS: We analyzed the effect of PTH on inorganic phosphate (Pi) reabsorption in Npt2a-/- mice to eliminate the influence of Npt2a on renal Pi reabsorption. In opossum kidney (OK) cells and Xenopus oocytes, we investigated the effect of NaPi-IIc transporter phosphorylation. Studies of mice with mutations of NaPi-IIc protein in which serine and threonine were replaced with either alanine (A), which prevents phosphorylation, or aspartic acid (D), which mimics the charged state of phosphorylated NaPi-IIc, were also performed to evaluate the involvement of phosphorylation in the regulation of transport function. RESULTS: The Npt2a-/- experiments showed that PTH administration rapidly inactivated NaPi-IIc function in the apical membrane of proximal tubular cells. Analysis of mutant proteins (S71, S138, T151, S174, T583) at putative protein kinase C sites, revealed that S138 markedly suppressed the function and cellular expression of mouse NaPi-IIc in Xenopus oocytes and OK cells. In addition, 138D had a short half-life compared with wild-type protein. CONCLUSIONS: The present study suggests that acute regulation of NaPi-IIc protein by PTH is involved in the inactivation of Na+-dependent Pi cotransporter activity and that phosphorylation of the transporter is involved in the rapid modification.


Assuntos
Túbulos Renais Proximais/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Fragmentos de Peptídeos/farmacologia , Fosfatos/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Reabsorção Renal/efeitos dos fármacos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Animais , Linhagem Celular , Feminino , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos Knockout , Gambás , Fosforilação , Estabilidade Proteica , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/deficiência , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Fatores de Tempo , Xenopus
15.
Pflugers Arch ; 471(1): 109-122, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218374

RESUMO

The solute carrier 34 (SLC34) family of membrane transporters is a major contributor to Pi homeostasis. Many factors are involved in regulating the SLC34 family. The roles of the bone mineral metabolism factors parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) in Pi homeostasis are well studied. Intracellular Pi is thought to be involved in energy metabolism, such as ATP production. Under certain conditions of altered energy metabolism, plasma Pi concentrations are affected by the regulation of a Pi shift into cells or release from the tissues. We recently investigated the mechanism of hepatectomy-related hypophosphatemia, which is thought to involve an unknown phosphaturic factor. Hepatectomy-related hypophosphatemia is due to impaired nicotinamide adenine dinucleotide (NAD) metabolism through its effects on the SLC34 family in the liver-kidney axis. The oxidized form of NAD, NAD+, is an essential cofactor in various cellular biochemical reactions. Levels of NAD+ and its reduced form NADH vary with the availability of dietary energy and nutrients. Nicotinamide phosphoribosyltransferase (Nampt) generates a key NAD+ intermediate, nicotinamide mononucleotide, from nicotinamide and 5-phosphoribosyl 1-pyrophosphate. The liver, an important organ of NAD metabolism, is thought to release metabolic products such as nicotinamide and may control NAD metabolism in other organs. Moreover, NAD is an important regulator of the circadian rhythm. Liver-specific Nampt-deficient mice and heterozygous Nampt mice have abnormal daily plasma Pi concentration oscillations. These data indicate that NAD metabolism in the intestine, liver, and kidney is closely related to Pi metabolism through the SLC34 family. Here, we review the relationship between the SLC34 family and NAD metabolism based on our recent studies.


Assuntos
Rim/metabolismo , Fígado/metabolismo , NAD/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo II/metabolismo , Animais , Ritmo Circadiano , Fator de Crescimento de Fibroblastos 23 , Homeostase , Humanos , Fosfatos/sangue
16.
Clin Exp Nephrol ; 23(3): 313-324, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30317447

RESUMO

BACKGROUND: The role of Na+-dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na+-dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na+-dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. METHODS: We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. RESULTS: We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na+/H+ exchanger regulatory factor 1 expression in OK cells. CONCLUSION: These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.


Assuntos
Rim/metabolismo , Proteínas de Transporte de Fosfato/fisiologia , Fosfatos/metabolismo , Animais , Células Cultivadas , Raquitismo Hipofosfatêmico Familiar/etiologia , Humanos , Hipercalciúria/etiologia , Camundongos , Gambás , RNA Interferente Pequeno/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/fisiologia , Xenopus laevis
17.
Pflugers Arch ; 471(1): 123-136, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30523405

RESUMO

Inorganic phosphate (Pi) secretion from the salivary glands and dietary Pi are key Pi sources. The regulatory mechanisms of Pi homeostasis in the salivary glands are unknown. We investigated how salivary Pi concentrations are regulated by dietary Pi in mouse models. Dietary manipulation significantly changed the levels of Npt2b protein in the salivary gland ductal cells. In addition, rapid feeding on a high-Pi diet increased the saliva Pi concentrations and led to rapid endocytosis of Npt2b in the apical membranes of the duct cells. Global Npt2b± mice exhibited increased salivary Pi concentrations and intestine-specific deletion of Npt2b after high Pi loading increased the salivary Pi concentrations. These findings indicate that Npt2b levels in the salivary glands affect the salivary Pi concentration and are regulated by dietary Pi. Intestinal Npt2b levels might also affect salivary Pi concentrations as well as renal Pi excretion. These findings suggest Pi is endogenously recycled by salivary Pi secretion, intestinal Pi absorption, and renal Pi excretion.


Assuntos
Adaptação Fisiológica , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fósforo na Dieta/metabolismo , Glândulas Salivares/metabolismo , Animais , Absorção Intestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos/metabolismo , Eliminação Renal , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo
18.
Data Brief ; 20: 1797-1803, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30294626

RESUMO

This article presents the experimental data supporting analysis of differential gene expression of human cutaneous T cell lymphoma (CTCL) cell culture cells (Hut78) treated with bexarotene or a variety of rexinoids, in conjunction with "A Novel Gene Expression Analytics-based Approach to Structure Aided Design of Rexinoids for Development as Next-Generation Cancer Therapeutics" (Hanish et al. 2018). Data presented here include microarray gene expression analysis of a subset of genes. A novel method for analyzing gene expression in the context of a model of ligand mechanism, called the Divergence Score, is described. Analysis to identify the presence of potential retinoid response elements in putative promoter regions of the study genes is also presented.

19.
Kidney Blood Press Res ; 43(5): 1409-1424, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212831

RESUMO

BACKGROUND/AIMS: Hyperphosphatemia is a serious complication of late-stage chronic kidney disease (CKD). Intestinal inorganic phosphate (Pi) handling plays an important role in Pi homeostasis in CKD. We investigated whether intestinal alkaline phosphatase 3 (Akp3), the enzyme that hydrolyzes dietary Pi compounds, is a target for the treatment of hyperphosphatemia in CKD. METHODS: We investigated Pi homeostasis in Akp3 knockout mice (Akp3-/-). We also studied the progression of renal failure in an Akp3-/- mouse adenine treated renal failure model. Plasma, fecal, and urinary Pi and Ca concentration were measured with commercially available kit, and plasma fibroblast growth factor 23, parathyroid hormone, and 1,25(OH)2D3 concentration were measured with ELISA. Brush border membrane vesicles were prepared from mouse intestine using the Ca2+ precipitation method and used for Pi transport activity and alkaline phosphatase activity. In vivo intestinal Pi absorption was measured with oral 32P administration. RESULTS: Akp3-/- mice exhibited reduced intestinal type II sodium-dependent Pi transporter (Npt2b) protein levels and Na-dependent Pi co-transport activity. In addition, plasma active vitamin D levels were significantly increased in Akp3-/- mice compared with wild-type animals. In the adenine-induced renal failure model, Akp3 gene deletion suppressed hyperphosphatemia. CONCLUSION: The present findings indicate that intestinal Akp3 deletion affects Na+-dependent Pi transport in the small intestine. In the adenine-induced renal failure model, Akp3 is predicted to be a factor contributing to suppression of the plasma Pi concentration.


Assuntos
Fosfatase Alcalina/fisiologia , Homeostase , Fosfatos/metabolismo , Insuficiência Renal/metabolismo , Fosfatase Alcalina/genética , Animais , Transporte Biológico , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Fosfatos/sangue , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo
20.
Genes Nutr ; 13: 19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008960

RESUMO

BACKGROUND: Diminished brain levels of two neurohormones, 5-hydroxytryptamine (5-HT; serotonin) and 1,25-dihydroxyvitamin D3 (1,25D; active vitamin D metabolite), are proposed to play a role in the atypical social behaviors associated with psychological conditions including autism spectrum disorders and depression. We reported previously that 1,25D induces expression of tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway to 5-HT, in cultured rat serotonergic neuronal cells. However, other enzymes and transporters in the pathway of tryptophan metabolism had yet to be examined with respect to the actions of vitamin D. Herein, we probed the response of neuronal cells to 1,25D by quantifying mRNA expression of serotonin synthesis isozymes, TPH1 and TPH2, as well as expression of the serotonin reuptake transporter (SERT), and the enzyme responsible for serotonin catabolism, monoamine oxidase-A (MAO-A). We also assessed the direct production of serotonin in cell culture in response to 1,25D. RESULTS: Employing quantitative real-time PCR, we demonstrate that TPH-1/-2 mRNAs are 28- to 33-fold induced by 10 nM 1,25D treatment of cultured rat serotonergic neuronal cells (RN46A-B14), and the enhancement of TPH2 mRNA by 1,25D is dependent on the degree of neuron-like character of the cells. In contrast, examination of SERT, the gene product of which is a target for the SSRI-class of antidepressants, and MAO-A, which encodes the predominant catabolic enzyme in the serotonin pathway, reveals that their mRNAs are 51-59% repressed by 10 nM 1,25D treatment of RN46A-B14 cells. Finally, serotonin concentrations are significantly enhanced (2.9-fold) by 10 nM 1,25D in this system. CONCLUSIONS: These results are consistent with the concept that vitamin D maintains extracellular fluid serotonin concentrations in the brain, thereby offering an explanation for how vitamin D could influence the trajectory and development of neuropsychiatric disorders. Given the profile of gene regulation in cultured RN46A-B14 serotonergic neurons, we conclude that 1,25D acts not only to induce serotonin synthesis, but also functions at an indirect, molecular-genomic stage to mimic SSRIs and MAO inhibitors, likely elevating serotonin in the CNS. These data suggest that optimal vitamin D status may contribute to improving behavioral pathophysiologies resulting from dysregulation of serotonergic neurotransmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...