Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 7(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921057

RESUMO

Horizontal gene transfer, a process through which an organism acquires genes from other organisms, is a rare evolutionary event in yeasts. Artificial random gene transfer can emerge as a valuable tool in yeast bioengineering to investigate the background of complex phenotypes, such as heat tolerance. In this study, a cDNA library was constructed from the mRNA of a methylotrophic yeast, Ogataea polymorpha, and then introduced into Saccharomyces cerevisiae. Ogataea polymorpha was selected because it is one of the most heat-tolerant species among yeasts. Screening of S. cerevisiae populations expressing O. polymorpha genes at high temperatures identified 59 O. polymorpha genes that contribute to heat tolerance. Gene enrichment analysis indicated that certain S. cerevisiae functions, including protein synthesis, were highly temperature-sensitive. Additionally, the results confirmed that heat tolerance in yeast is a complex phenotype dependent on multiple quantitative loci. Random gene transfer would be a useful tool for future bioengineering studies on yeasts.

2.
Commun Biol ; 4(1): 215, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594248

RESUMO

Some plant trans-1,4-prenyltransferases (TPTs) produce ultrahigh molecular weight trans-1,4-polyisoprene (TPI) with a molecular weight of over 1.0 million. Although plant-derived TPI has been utilized in various industries, its biosynthesis and physiological function(s) are unclear. Here, we identified three novel Eucommia ulmoides TPT isoforms-EuTPT1, 3, and 5, which synthesized TPI in vitro without other components. Crystal structure analysis of EuTPT3 revealed a dimeric architecture with a central hydrophobic tunnel. Mutation of Cys94 and Ala95 on the central hydrophobic tunnel no longer synthesizd TPI, indicating that Cys94 and Ala95 were essential for forming the dimeric architecture of ultralong-chain TPTs and TPI biosynthesis. A spatiotemporal analysis of the physiological function of TPI in E. ulmoides suggested that it is involved in seed development and maturation. Thus, our analysis provides functional and mechanistic insights into TPI biosynthesis and uncovers biological roles of TPI in plants.


Assuntos
Dimetilaliltranstransferase/metabolismo , Eucommiaceae/enzimologia , Hemiterpenos/biossíntese , Látex/biossíntese , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Eucommiaceae/genética , Hemiterpenos/química , Látex/química , Modelos Moleculares , Peso Molecular , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Conformação Proteica , Relação Estrutura-Atividade
3.
Microbiol Res ; 232: 126372, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31759230

RESUMO

The methylotrophic yeast, Ogataea thermomethanolica TBRC656, is an attractive host organism for heterologous protein production owing to the availability of protein expression vectors and a genome-editing tool. In this study, we focused on mating-type switching and gene expression in order to elucidate its sexual life cycle and establish genetic approaches applicable for the strain. A putative mating-type gene cluster was identified in TBRC656 that is syntenic to the cluster in Ogataea parapolymorpha DL-1 (previously named Hansenula polymorpha). Like DL-1, TBRC656 possesses two mating loci, namely MATa and MATα, and also shows flip-flop mating-type switching. Interestingly, unlike any other methylotrophic yeast, TBRC656 robustly switched mating type during late growth in rich medium (YPD). Under nutrient depletion, mating-type switching was observed within one hour. Transcription from both MATa and MATα mating loci was detected during growth in YPD, and possibly induced upon nitrogen depletion. Gene expression from MATα was detected as a single co-transcript from a three-gene array (α2-α1-a1S). Deletion of a putative a1S ORF at the MATα locus had no observed effect on mating-type switching but demonstrated significant effect on mating-type gene expression at both MATa and MATα loci.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos Tipo Acasalamento/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Fúngicos Tipo Acasalamento/fisiologia , Haploidia , Proteínas de Homeodomínio/genética , Família Multigênica , Pichia/genética , Pichia/fisiologia , Proteínas Repressoras/genética , Reprodução/genética , Reprodução/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
4.
Genes Genet Syst ; 93(5): 199-207, 2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30449767

RESUMO

To achieve inorganic phosphate (Pi) homeostasis, cells must be able to sense intracellular and extracellular Pi concentrations. In the Pi signaling (PHO) pathway in Saccharomyces cerevisiae, high Pi represses genes involved in Pi uptake (e.g., PHO84) and Pi utilization (PHO5); conversely, the cyclin-dependent kinase inhibitor Pho81 inhibits the activity of the Pho80-Pho85 cyclin-cyclin dependent kinase complex in low-Pi conditions, leading to induction of these genes. However, how yeast senses Pi availability remains unresolved. To identify factors involved in Pi sensing upstream of the Pho81-Pho80-Pho85 complex, we generated and screened suppressor mutants of a Δpho84 strain that shows constitutive PHO5 expression. By a series of genetic tests, including dominance-recessiveness, complementation and tetrad analyses, three sef (suppressor of pho84 [pho eighty-four]) mutants (sef8, sef9 and sef10) were shown to contain a novel single mutation. The sef mutants suppressed the phenotype of constitutive PHO5 expression at the transcriptional level, but did not show restored Pi uptake capacity. An epistasis-hypostasis test revealed that the sef mutations were hypostatic to pho80 mutation, indicating that their gene products function upstream of the Pho81-Pho80-Pho85 complex in the PHO pathway. The sef mutations identified are associated with gene(s) that may be involved in the homeostasis of an intracellular Pi level-sensing mechanism in S. cerevisiae.


Assuntos
Fosfatos/metabolismo , Simportadores de Próton-Fosfato/antagonistas & inibidores , Simportadores de Próton-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatase Ácida/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Mutação , Fenótipo , Simportadores de Próton-Fosfato/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
5.
Sci Rep ; 7(1): 16318, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176579

RESUMO

Saccharomyces cerevisiae and its closely related yeasts undergo mating type switching by replacing DNA sequences at the active mating type locus (MAT) with one of two silent mating type cassettes. Recently, a novel mode of mating type switching was reported in methylotrophic yeast, including Ogataea polymorpha, which utilizes chromosomal recombination between inverted-repeat sequences flanking two MAT loci. The inversion is highly regulated and occurs only when two requirements are met: haploidy and nutritional starvation. However, links between this information and the mechanism associated with mating type switching are not understood. Here we investigated the roles of transcription factors involved in yeast sexual development, such as mating type genes and the conserved zinc finger protein Rme1. We found that co-presence of mating type a1 and α2 genes was sufficient to prevent mating type switching, suggesting that ploidy information resides solely in the mating type locus. Additionally, RME1 deletion resulted in a reduced rate of switching, and ectopic expression of O. polymorpha RME1 overrode the requirement for starvation to induce MAT inversion. These results suggested that mating type switching in O. polymorpha is likely regulated by two distinct transcriptional programs that are linked to the ploidy and transmission of the starvation signal.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Genes Fúngicos Tipo Acasalamento/fisiologia , Haploidia , Pichia/genética , Pichia/fisiologia , Reprodução/genética , Reprodução/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
6.
Elife ; 62017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28853395

RESUMO

Cytoplasmic microtubules (cMT) control mitotic spindle positioning in many organisms, and are therefore pivotal for successful cell division. Despite its importance, the temporal control of cMT formation remains poorly understood. Here we show that unlike the best-studied yeast Saccharomyces cerevisiae, position of pre-anaphase nucleus is not strongly biased toward bud neck in Ogataea polymorpha and the regulation of spindle positioning becomes active only shortly before anaphase. This is likely due to the unstable property of cMTs compared to those in S. cerevisiae. Furthermore, we show that cMT nucleation/anchoring is restricted at the level of recruitment of the γ-tubulin complex receptor, Spc72, to spindle pole body (SPB), which is regulated by the polo-like kinase Cdc5. Additionally, electron microscopy revealed that the cytoplasmic side of SPB is structurally different between G1 and anaphase. Thus, polo-like kinase dependent recruitment of γ-tubulin receptor to SPBs determines the timing of spindle orientation in O. polymorpha.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomycetales/metabolismo , Corpos Polares do Fuso/metabolismo , Microscopia Eletrônica , Saccharomycetales/ultraestrutura
7.
J Biosci Bioeng ; 124(5): 487-492, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28666889

RESUMO

The methylotrophic yeast Ogataea polymorpha (syn. Hansenula polymorpha) is an attractive industrial non-conventional yeast showing high thermo-tolerance (up to 50°C) and xylose assimilation. However, genetic manipulation of O. polymorpha is often laborious and time-consuming because it has lower homologous recombination efficiency relative to Saccharomyces cerevisiae. To overcome this disadvantage, we applied the CRISPR/Cas9 system as a powerful genome editing tool in O. polymorpha. In this system, both single guide RNA (sgRNA) and endonuclease Cas9 were expressed by a single autonomously-replicable plasmid and the sgRNA portion could be easily changed by using PCR and In-Fusion cloning techniques. Because the mutation efficiency of the CRISPR/Cas9 system was relatively low when the sgRNA was expressed under the control of the OpSNR6 promoter, the tRNACUG gene was used for sgRNA expression. The editing efficiency of this system ranged from 17% to 71% of transformants in several target genes tested (ADE12, PHO1, PHO11, and PHO84). These findings indicate that genetic manipulation of O. polymorpha will be more convenient and accelerated by using this CRISPR/Cas9 system.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma Fúngico/genética , RNA Fúngico/genética , RNA de Transferência/genética , Saccharomycetales/genética , Genes Fúngicos , Plasmídeos/genética , Regiões Promotoras Genéticas/genética
8.
Biochimie ; 139: 95-106, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28478108

RESUMO

Farnesyl diphosphate synthase (FPS) is an essential enzyme in the biosynthesis of prenyl precursors for the production of primary and secondary metabolites, including sterols, dolichols, carotenoids and ubiquinones, and for the modification of proteins. Here we identified and characterized two FPSs (EuFPS1 and EuFPS2) from the plant Eucommia ulmoides. The EuFPSs had seven highly conserved prenyltransferase-specific domains that are critical for activity. Complementation and biochemical analyses using bacterially produced recombinant EuFPS isoforms showed that the EuFPSs had FPP synthesis activities both in vivo and in vitro. In addition to the typical reaction mechanisms of FPS, EuFPSs utilized farnesyl diphosphate (FPP) as an allylic substrate and participated in further elongation of the isoprenyl chain, resulting in the synthesis of geranylgeranyl diphosphate. However, despite the high amino acid similarities between the two EuFPS isozymes, their specific activities, substrate preferences, and final reaction products were different. The use of dimethylallyl diphosphate (DMAPP) as an allylic substrate highlighted the differences between the two enzymes: depending on the pH, the metal ion cofactor, and the cofactor concentration, EuFPS2 accumulated geranyl diphosphate as an intermediate product at a constant rate, whereas EuFPS1 synthesized little geranyl diphosphate. The reaction kinetics of the EuFPSs demonstrated that isopentenyl diphosphate and DMAPP were used both as substrates and as inhibitors of EuFPS activity. Taken together, the results indicate that the biosynthesis of FPP is highly regulated by various factors indispensable for EuFPS reactions in plants.


Assuntos
Eucommiaceae/enzimologia , Geraniltranstransferase/metabolismo , Hemiterpenos/metabolismo , Compostos Organofosforados/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Sequência de Aminoácidos , Geraniltranstransferase/química , Cinética , Modelos Moleculares , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
9.
AMB Express ; 6(1): 107, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27826949

RESUMO

High-temperature ethanol fermentation has several benefits including a reduction in cooling cost, minimizing risk of bacterial contamination, and enabling simultaneous saccharification and fermentation. To achieve the efficient ethanol fermentation at high temperature, yeast strain that tolerates to not only high temperature but also the other stresses present during fermentation, e.g., ethanol, osmotic, and oxidative stresses, is indispensable. The C3253, C3751, and C4377 Saccharomyces cerevisiae strains, which have been previously isolated as thermotolerant yeasts, were found to be multiple stress-tolerant. In these strains, continuous expression of heat shock protein genes and intracellular trehalose accumulation were induced in response to stresses causing protein denaturation. Compared to the control strains, these multiple stress-tolerant strains displayed low intracellular reactive oxygen species levels and effective cell wall remodeling upon exposures to almost all stresses tested. In response to simultaneous multi-stress mimicking fermentation stress, cell wall remodeling and redox homeostasis seem to be the primary mechanisms required for protection against cell damage. Moreover, these strains showed better performances of ethanol production than the control strains at both optimal and high temperatures, suggesting their potential use in high-temperature ethanol fermentation.

10.
J Biosci Bioeng ; 122(4): 415-20, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27102264

RESUMO

Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast.


Assuntos
Farmacorresistência Fúngica , Ácido Láctico/biossíntese , Ácido Láctico/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentação , Biblioteca Gênica , Engenharia Genética , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Proteínas de Membrana Transportadoras/genética , Poliésteres/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Curr Genet ; 62(3): 595-605, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26794724

RESUMO

To gain better understanding of the diversity and evolution of the gene regulation system in eukaryotes, the phosphate signal transduction (PHO) pathway in non-conventional yeasts has been studied in recent years. Here we characterized the PHO pathway of Hansenula polymorpha, which is genetically tractable and distantly related to Saccharomyces cerevisiae and Schizosaccharomyces pombe, in order to get more information for the diversity and evolution of the PHO pathway in yeasts. We generated several pho gene-deficient mutants based on the annotated draft genome of H. polymorpha BY4329. Except for the Hppho2-deficient mutant, these mutants exhibited the same phenotype of repressible acid phosphatase (APase) production as their S. cerevisiae counterparts. Subsequently, Hppho80 and Hppho85 mutants were isolated as suppressors of the Hppho81 mutation and Hppho4 was isolated from Hppho80 and Hppho85 mutants as the sole suppressor of the Hppho80 and Hppho85 mutations. To gain more complete delineation of the PHO pathway in H. polymorpha, we screened for UV-irradiated mutants that expressed APase constitutively. As a result, three classes of recessive constitutive mutations and one dominant constitutive mutation were isolated. Genetic analysis showed that one group of recessive constitutive mutations was allelic to HpPHO80 and that the dominant mutation occurred in the HpPHO81 gene. Epistasis analysis between Hppho81 and the other two classes of recessive constitutive mutations suggested that the corresponding new genes, named PHO51 and PHO53, function upstream of HpPHO81 in the PHO pathway. Taking these findings together, we conclude that the main components of the PHO pathway identified in S. cerevisiae are conserved in the methylotrophic yeast H. polymorpha, even though these organisms separated from each other before duplication of the whole genome. This finding is useful information for the study of evolution of the PHO regulatory system in yeasts.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Redes e Vias Metabólicas , Fosfatos/metabolismo , Transdução de Sinais , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Ativação Enzimática , Epistasia Genética , Regulação Fúngica da Expressão Gênica , Mutação , Ligação Proteica
12.
Sci Rep ; 5: 12510, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26224198

RESUMO

Segmental aneuploidy can play an important role in environmental adaptation. However, study of segmental aneuploids is severely hampered by the difficulty of creating them in a designed fashion. Here, we describe a PCR-mediated chromosome duplication (PCDup) technology that enables the generation of segmental aneuploidy at any desired chromosomal region in Saccharomyces cerevisiae. We constructed multiple strains harboring 100 kb to 200 kb segmental duplications covering the whole of the S. cerevisiae genome. Interestingly, some segmental aneuploidies confer stress tolerance, such as to high temperature, ethanol and strong acids, while others induce cell lethality and stress sensitivity, presumably as result of the simultaneous increases in dosages of multiple genes. We suggest that our PCDup technology will accelerate studies into the phenotypic changes resulting from alteration of gene dosage balance of multiple genes and will provide new insights into the adaptive molecular mechanisms in the genome in segmental aneuploidy-derived human diseases.


Assuntos
Aneuploidia , Cromossomos/genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Ácidos/toxicidade , Duplicação Cromossômica , Etanol/toxicidade , Dosagem de Genes , Cariotipagem , Fenótipo , Plasmídeos/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/efeitos dos fármacos , Temperatura
13.
J Biosci Bioeng ; 119(5): 526-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25454064

RESUMO

Chromosome engineering enables large-scale genome manipulation and can be used as a novel technology for breeding of yeasts. PCR-mediated chromosome splitting (PCS) offers a powerful tool for chromosome engineering by enabling a yeast chromosome to be split at any desired site. By applying PCS, a huge variety of chromosome combinations can be created and the best strain under specific conditions can be selected-a technology that we have called genome reorganization. Once the optimal strain is obtained, chromosome constitutions need to be maintained stably; however, mini-chromosomes of less than 50 kb are at relatively high frequency lost during cultivation. To overcome this problem, in this study we screened for multicopy suppressors of the high loss of mini-chromosomes by using a multicopy genomic library of Saccharomyces cerevisiae. We identified a novel gene, YCR041W, that stabilizes mini-chromosomes. The translational product of YCR041W was suggested to play an important role in increasing stability for mini-chromosome maintenance, probably by decreasing the rate of loss during mitotic cell division. The stabilization of mini-chromosomes conferred by YCR041W overexpression was completely dependent on the silencing protein Sir4, suggesting that a process related to telomere function might be involved in mini-chromosome stabilization. Overexpression of YCR041W stabilized not only a yeast artificial chromosome vector, but also a mini-chromosome derived from a natural chromosome. Taking these results together, we propose that YCR041W overexpression can be used as a novel chromosome engineering tool for controlling mini-chromosome maintenance and loss.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cromossomos Artificiais de Levedura/genética , Cromossomos Fúngicos/genética , Mitose/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Cromossomos Artificiais de Levedura/metabolismo , Cromossomos Fúngicos/metabolismo , Biblioteca Genômica , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo
14.
PLoS Genet ; 10(11): e1004796, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25412462

RESUMO

Yeast mating type is determined by the genotype at the mating type locus (MAT). In homothallic (self-fertile) Saccharomycotina such as Saccharomyces cerevisiae and Kluveromyces lactis, high-efficiency switching between a and α mating types enables mating. Two silent mating type cassettes, in addition to an active MAT locus, are essential components of the mating type switching mechanism. In this study, we investigated the structure and functions of mating type genes in H. polymorpha (also designated as Ogataea polymorpha). The H. polymorpha genome was found to harbor two MAT loci, MAT1 and MAT2, that are ∼18 kb apart on the same chromosome. MAT1-encoded α1 specifies α cell identity, whereas none of the mating type genes were required for a identity and mating. MAT1-encoded α2 and MAT2-encoded a1 were, however, essential for meiosis. When present in the location next to SLA2 and SUI1 genes, MAT1 or MAT2 was transcriptionally active, while the other was repressed. An inversion of the MAT intervening region was induced by nutrient limitation, resulting in the swapping of the chromosomal locations of two MAT loci, and hence switching of mating type identity. Inversion-deficient mutants exhibited severe defects only in mating with each other, suggesting that this inversion is the mechanism of mating type switching and homothallism. This chromosomal inversion-based mechanism represents a novel form of mating type switching that requires only two MAT loci.


Assuntos
Inversão Cromossômica/genética , Evolução Molecular , Genes Fúngicos Tipo Acasalamento/genética , Recombinação Genética , Regulação Fúngica da Expressão Gênica , Meiose/genética , Pichia/genética , Reprodução/genética , Saccharomyces cerevisiae
15.
Nucleic Acids Res ; 42(15): 9838-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25104020

RESUMO

Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.


Assuntos
Genes Fúngicos , Genes Letais , Genoma Fúngico , Saccharomyces cerevisiae/genética , Deleção Cromossômica , Mapeamento Cromossômico
16.
Appl Environ Microbiol ; 80(11): 3488-95, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682296

RESUMO

Improvement of the lactic acid resistance of the yeast Saccharomyces cerevisiae is important for the application of the yeast in industrial production of lactic acid from renewable resources. However, we still do not know the precise mechanisms of the lactic acid adaptation response in yeast and, consequently, lack effective approaches for improving its lactic acid tolerance. To enhance our understanding of the adaptation response, we screened for S. cerevisiae genes that confer enhanced lactic acid resistance when present in multiple copies and identified the transcriptional factor Haa1 as conferring resistance to toxic levels of lactic acid when overexpressed. The enhanced tolerance probably results from increased expression of its target genes. When cells that expressed Haa1 only from the endogenous promoter were exposed to lactic acid stress, the main subcellular localization of Haa1 changed from the cytoplasm to the nucleus within 5 min. This nuclear accumulation induced upregulation of the Haa1 target genes YGP1, GPG1, and SPI1, while the degree of Haa1 phosphorylation observed under lactic acid-free conditions decreased. Disruption of the exportin gene MSN5 led to accumulation of Haa1 in the nucleus even when no lactic acid was present. Since Msn5 was reported to interact with Haa1 and preferentially exports phosphorylated cargo proteins, our results suggest that regulation of the subcellular localization of Haa1, together with alteration of its phosphorylation status, mediates the adaptation to lactic acid stress in yeast.


Assuntos
Núcleo Celular/química , Tolerância a Medicamentos , Ácido Láctico/toxicidade , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição/análise , Adaptação Fisiológica , Expressão Gênica , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
17.
Gene ; 533(1): 110-8, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24100086

RESUMO

Two fatty acid desaturase genes have been cloned: HpFAD2 and HpFAD3 encode Hansenula polymorpha Δ12-fatty acid desaturase (HpFad2) and Δ15-fatty acid desaturase (HpFad3), which are responsible for the production of linoleic acid (LA, C18:2, Δ9, Δ12) and α-linolenic acid (ALA, αC18:3, Δ9, Δ12, Δ15), respectively. The open reading frame of the HpFAD2 and HpFAD3 genes is 1215bp and 1239bp, encoding 405 and 413 amino acids, respectively. The putative amino acid sequences of HpFad2 and HpFad3 share more than 60% similarity and three conserved histidine-box motifs with other known yeast Fad homologs. Hpfad2Δ disruptant cannot produce C18:2 and αC18:3, while the deletion of HpFAD3 only causes the absence of αC18:3. Heterologous expression of either the HpFAD2 or the HpFAD3 gene in Saccharomyces cerevisiae resulted in the presence of C18:2 and αC18:3 when the C18:2 precursor was added. Taken together, these observations indicate that HpFAD2 and HpFAD3 indeed encode Δ12- and Δ15-fatty acid desaturases that function as the only ones responsible for desaturation of oleic acid (C18:1) and linoleic acid (C18:2), respectively, in H. polymorpha. Because a Fatty Acid Regulated (FAR) region and a Low Oxygen Response Element (LORE), which are responsible for regulation of a Δ9-fatty acid desaturase gene (ScOLE1) in S. cerevisiae, are present in the upstream regions of both genes, we investigated whether the transcriptional levels of HpFAD2 and HpFAD3 are affected by supplementation with nutrient unsaturated fatty acids or by low oxygen conditions. Whereas both genes were up-regulated under low oxygen conditions, only HpFAD3 transcription was repressed by an excess of C18:1, C18:2 and C18:3, while the HpFAD2 transcript level did not significantly change. These observations indicate that HpFAD2 expression is not controlled at the transcriptional level by fatty acids even though it contains a FAR-like region. This study indicates that HpFAD2 may be regulated by post-transcriptional mechanisms, whereas HpFAD3 may be mainly controlled at a transcriptional level.


Assuntos
Ácidos Graxos Dessaturases/genética , Genes Fúngicos , Pichia/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Ácidos Graxos Dessaturases/química , Ácidos Graxos/metabolismo , Dados de Sequência Molecular , Pichia/enzimologia , Pichia/metabolismo , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
18.
J Biosci Bioeng ; 117(2): 135-141, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23953972

RESUMO

In Saccharomyces cerevisiae, disruption of both protein phosphatase genes, PTP2 and MSG5, causes calcium sensitivity while additional disruption of protein kinase genes BCK1, MKK1, SLT2, MCK1, YAK1 and SSK2 confers calcium tolerance. Although the roles of BCK1, MKK1 and SLT2 have been characterized recently, the mechanism of suppression of the calcium sensitivity by SSK2 disruption is poorly understood. In this study, genetic analysis revealed a novel, high osmolarity glycerol (HOG)-independent suppressor function of Ssk2 in relation to the Ptp2 and Msg5-mediated calcium signaling. Through microarray analysis, we identified 19 genes with distinct pattern of expression that is likely involved in the calcium sensitive phenotype of the ptp2Δmsg5Δ double disruptant. Furthermore, we found msn2Δ and bcy1Δ as suppressors of the calcium sensitive phenotype. Our results suggest the interrelationship of a HOG-independent function of Ssk2, transcription factor Msn2, protein kinase A-related protein Bcy1 and 19 rise and fall genes as responsible for the suppression mechanism of the ptp2Δmsg5Δ double disruptant by ssk2Δ disruption.


Assuntos
Sinalização do Cálcio/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Deleção de Genes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Concentração Osmolar , Fenótipo , Proteínas Tirosina Fosfatases/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Arch Microbiol ; 195(12): 843-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24201996

RESUMO

Yeast fatty acid synthase (Fas) comprises two subunits, α6 and ß6, encoded by FAS2 and FAS1, respectively. To determine features of yeast Fas that control fatty acyl chain length, chimeric genes were constructed by combining FAS sequences from Saccharomyces cerevisiae (ScFAS) and Hansenula polymorpha (HpFAS), which mostly produces C16 and C18 fatty acids, respectively. The C16/C18 ratios decreased from 2.2 ± 0.1 in wild-type S. cerevisiae to 1.0 ± 0.1, 0.5 ± 0.2 and 0.8 ± 0.1 by replacement of ScFAS1, ScFAS2 and ScFAS1 ScFAS2 with HpFAS1, HpFAS2 and HpFAS1 HpFAS2, respectively, suggesting that the α, but not ß subunits play a major role in determining fatty acyl chain length. Replacement of phosphopantetheinyl transferase (PPT) domain with the equivalent region from HpFAS2 did not affect C16/C18 ratio. Chimeric Fas2 containing half N-terminal ScFas2 and half C-terminal HpFas2 carrying H. polymorpha ketoacyl synthase (KS) and PPT gave a remarkable decrease in C16/C18 ratio (0.6 ± 0.1), indicating that KS plays a major role in determining chain length.


Assuntos
Ácidos Graxos/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Anti-Infecciosos Locais/farmacologia , Sequência de Bases , Etanol/farmacologia , Ácido Graxo Sintases/genética , Ácidos Graxos/genética , Temperatura Alta , Pichia/enzimologia , Pichia/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
20.
Appl Microbiol Biotechnol ; 97(20): 9011-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872957

RESUMO

Breeding of yeast strains with higher RNA content is important because yeast RNA is a significant source of 5'-ribonucleotides, which have considerable use in both the food and pharmaceutical industries. Ribosomal RNA (rRNA) is an important source of yeast RNA as it accounts for about 80 % of total RNA content. We previously reported a dominant suppressor mutant of an rrn10 disruptant named SupE, which displays the ability not only to restore diminished RNA content caused by rrn10 disruption but also to increase the transcription level of ribosomal protein (RP) genes on an ∆rrn10 background in Saccharomyces cerevisiae. Here, to construct an S. cerevisiae strain with higher RNA content, we investigated the effect of increasing the copy number of the rDNA gene on a ∆rrn10 SUPE background. We successfully constructed a SupE strain with two copies of the rDNA cluster (ca. 300 rDNA genes) by using chromosome-splitting technology. The RNA content of this strain was 61 % higher than that of the SupE strain with a single copy of the rDNA cluster (ca. 150 rDNA genes), and 40 % higher than that of the wild-type strain with two copies of the rDNA cluster. A further increase in RNA content of 47 % was achieved by multicopy expression of the RPL40A gene in the SupE strain with two copies of the rDNA cluster. These observations suggest that we have constructed an S. cerevisiae strain with two copies of the rDNA cluster, which has achieved a considerably higher RNA content. Furthermore, the strategy taken in this study provides an effective approach to constructing S. cerevisiae strains with high potential for yeast food biotechnology.


Assuntos
DNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Supressão Genética , Dosagem de Genes , RNA Fúngico/genética , RNA Ribossômico/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...