Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(40): e2209471119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161922

RESUMO

The transmission of chromatin states from parent cells to daughter cells preserves cell-specific transcriptional states and thus cell identity through cell division. The mechanism that underpins this process is not fully understood. The role that chromatin states serve in transmitting gene expression information across generations via sperm and oocytes is even less understood. Here, we utilized a model in which Caenorhabditis elegans sperm and oocyte alleles were inherited in different states of the repressive mark H3K27me3. This resulted in the alleles achieving different transcriptional states within the nuclei of offspring. Using this model, we showed that sperm alleles inherited without H3K27me3 were sensitive to up-regulation in offspring somatic and germline tissues, and tissue context determined which genes were up-regulated. We found that the subset of sperm alleles that were up-regulated in offspring germlines retained the H3K27me3(-) state and were transmitted to grandoffspring as H3K27me3(-) and up-regulated epialleles, demonstrating that H3K27me3 can serve as a transgenerational epigenetic carrier in C. elegans.


Assuntos
Alelos , Caenorhabditis elegans , Epigênese Genética , Histonas , Espermatozoides , Animais , Caenorhabditis elegans/genética , Cromatina/metabolismo , Histonas/genética , Masculino , Oócitos/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo
2.
Nat Commun ; 10(1): 1271, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894520

RESUMO

Paternal epigenetic inheritance is gaining attention for its growing medical relevance. However, the form in which paternal epigenetic information is transmitted to offspring and how it influences offspring development remain poorly understood. Here we show that in C. elegans, sperm-inherited chromatin states transmitted to the primordial germ cells in offspring influence germline transcription and development. We show that sperm chromosomes inherited lacking the repressive histone modification H3K27me3 are maintained in that state by H3K36me3 antagonism. Inheritance of H3K27me3-lacking sperm chromosomes results in derepression in the germline of somatic genes, especially neuronal genes, predominantly from sperm-inherited alleles. This results in germ cells primed for losing their germ cell identity and adopting a neuronal fate. These data demonstrate that histone modifications are one mechanism through which epigenetic information from a father can shape offspring gene expression and development.


Assuntos
Caenorhabditis elegans/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Herança Paterna , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Diferenciação Celular , Cromatina/química , Cromatina/metabolismo , Embrião não Mamífero , Histonas/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Neurônios/citologia , Neurônios/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...