Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(27): 17735-17748, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38934127

RESUMO

One of the limitations of stretchable displays is the severe degradation of resolution or the decrease in the number of pixels per unit area when stretched. Hence, we suggest a strain-sensor-in-pixel (S-SIP) system through the adoption of hidden pixels that are activated only during the stretch mode for maintaining the density of on-state pixels. For the S-SIP system, the gate and source electrodes of InGaZnO thin-film transistors (TFTs) in an existing pixel are connected to a resistive strain sensor through the facile and selective deposition of silver nanowires (AgNWs) via electrohydrodynamic-jet-printing. With this approach, the strain sensor integrated TFT functions as a strain-triggered switch, which responds only to stretching along the designated axes by finely tuning the orientation and cycles of AgNW printing. The strain sensor-integrated TFT remains in an off-state when unstretched and switches to an on-state when stretched, exhibiting a large negative gauge factor of -1.1 × 1010 and a superior mechanical stability enduring 6000 cycles, which enables the efficient structure to operate hidden pixels without requiring additional signal processing. Furthermore, the stable operation of the S-SIP in a 5 × 5-pixel array is demonstrated via circuit simulation, implying the outstanding applicability and process compatibility to the conventional active-matrix display backplanes.

2.
Skin Res Technol ; 29(8): e13433, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37632187

RESUMO

BACKGROUND: Age-related changes in scalp parameters affect hair quality and scalp condition. However, detailed data on biophysical parameters of the scalp across age groups remain scarce. We aimed to investigate the differences in scalp parameters between individuals in their 20s and 50s and analyze their sex-specific variations. MATERIALS AND METHODS: Two hundred participants (160 women and 40 men) were equally divided into 20s and 50s age groups. Biophysical parameters of the scalp, including elasticity, pH, trans-epidermal water loss (TEWL), sebum production, desquamation, firmness, redness, and yellowness, were measured in the vertex, occipital, and temporal regions. Hair density and thickness were measured in the temporal region. The accumulation of advanced glycation end products (AGEs) in the skin was noninvasively measured in a subset of 60 women. RESULTS: Skin firmness and redness increased with age in women, whereas yellowness increased with age in both sexes. Sebum production and pH levels were significantly lower in the 50s age group than in the 20s age group, particularly in women. TEWL was lower in men in their 50s than in those in their 20s, particularly in the occipital region. A significant reduction in hair density was observed in the 50s age group in both sexes. AGE accumulation in the skin increased with age and was correlated with scalp skin yellowness. CONCLUSION: Age-related changes in scalp parameters have important implications for hair health and scalp condition. These findings emphasize the importance of considering age and sex when developing hair care strategies.


Assuntos
Couro Cabeludo , Pele , Masculino , Feminino , Humanos , Cabelo , Epiderme , Biofísica
3.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014376

RESUMO

The skin tissue of the scalp is unique from other skin tissues because it coexists with hair, and many differences in microbial composition have been confirmed. In scalp tissues, hair loss occurs due to a combination of internal and external factors, and several studies are being conducted to counteract this. However, not many studies have addressed hair loss from the perspective of the microbiome. In this study, subjects with hair loss and those with normal scalps were set as experimental and control groups, respectively. In the experimental group, hair loss had progressed, and there was a large difference in microbiome composition compared to the group with normal scalps. In particular, differences in Accumulibacter, Staphylococcus, and Corynebacterium were found. From Staphylococcus epidermidis Cicaria, two active components were isolated as a result of repeated column chromatography. Spectroscopic data led to the determination of chemical structures for adenosine and biotin. Fractions were obtained, and ex vivo tests were conducted using hair follicles derived from human scalp tissue. When the microbiome adenosine-treated group was compared to the control group, hair follicle length was increased, and hair root diameter was maintained during the experimental periods. In addition, the Cicaria culture medium and the microbial adenosine- and biotin-treated groups maintained the anagen phase, reducing progression to the catagen phase in the hair growth cycle. In conclusion, it was confirmed that the Cicaria culture medium and the microbial adenosine and biotin derived from the culture were effective in inhibiting hair loss.


Assuntos
Microbiota , Staphylococcus epidermidis , Adenosina , Alopecia , Biotina , Folículo Piloso , Humanos
4.
ACS Nano ; 15(9): 15362-15370, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34463475

RESUMO

Neuromorphic engineering, a methodology for emulating synaptic functions or neural systems, has attracted tremendous attention for achieving next-generation artificial intelligence technologies in the field of electronics and photonics. However, to emulate human visual memory, an active pixel sensor array for neuromorphic photonics has yet to be demonstrated, even though it can implement an artificial neuron array in hardware because individual pixels can act as artificial neurons. Here, we present a neuromorphic active pixel image sensor array (NAPISA) chip based on an amorphous oxide semiconductor heterostructure, emulating the human visual memory. In the 8 × 8 NAPISA chip, each pixel with a select transistor and a neuromorphic phototransistor is based on a solution-processed indium zinc oxide back channel layer and sputtered indium gallium zinc oxide front channel layer. These materials are used as a triggering layer for persistent photoconductivity and a high-performance channel layer with outstanding uniformity. The phototransistors in the pixels exhibit both photonic potentiation and depression characteristics by a constant negative and positive gate bias due to charge trapping/detrapping. The visual memory and forgetting behaviors of the NAPISA can be successfully demonstrated by using the pulsed light stencil method without any software or simulation. This study provides valuable information to other neuromorphic devices and systems for next-generation artificial intelligence technologies.


Assuntos
Inteligência Artificial , Eletrônica , Humanos
5.
ACS Appl Mater Interfaces ; 13(29): 34597-34604, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279076

RESUMO

As constructing hardware technology is widely regarded as an important step toward realizing brain-like computers and artificial intelligence systems, the development of artificial synaptic electronics that can simulate biological synaptic functions is an emerging research field. Among the various types of artificial synapses, synaptic transistors using an electrolyte as the gate electrode have been implemented as the high capacitance of the electrolyte increases the driving current and lowers operating voltages. Here, transistors using maltose-ascorbic acid as the proton-conducting electrolyte are proposed. A novel electrolyte composed of maltose and ascorbic acid, both of which are biocompatible, enables the migration of protons. This allows the channel conductance of the transistors to be modulated with the gate input pulse voltage, and fundamental synaptic functions including excitatory postsynaptic current, paired-pulse facilitation, long-term potentiation, and long-term depression can be successfully emulated. Furthermore, the maltose-ascorbic acid electrolyte (MAE)-gated synaptic transistors exhibit high mechanical endurance, with near-linear conductivity modulation and repeatability after 1000 bending cycles under a curvature radius of 5 mm. Benefitting from its excellent biodegradability and biocompatibility, the proposed MAE has potential applications in environmentally friendly, economical, and high-performance neuromorphic electronics, which can be further applied to dermal electronics and implantable electronics in the future.


Assuntos
Ácido Ascórbico/química , Materiais Biocompatíveis/química , Computadores Moleculares , Eletrólitos/química , Maltose/química , Sinapses , Animais , Biomimética , Condutividade Elétrica , Suínos
6.
Nat Commun ; 12(1): 3559, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117235

RESUMO

Various large-area growth methods for two-dimensional transition metal dichalcogenides have been developed recently for future electronic and photonic applications. However, they have not yet been employed for synthesizing active pixel image sensors. Here, we report on an active pixel image sensor array with a bilayer MoS2 film prepared via a two-step large-area growth method. The active pixel of image sensor is composed of 2D MoS2 switching transistors and 2D MoS2 phototransistors. The maximum photoresponsivity (Rph) of the bilayer MoS2 phototransistors in an 8 × 8 active pixel image sensor array is statistically measured as high as 119.16 A W-1. With the aid of computational modeling, we find that the main mechanism for the high Rph of the bilayer MoS2 phototransistor is a photo-gating effect by the holes trapped at subgap states. The image-sensing characteristics of the bilayer MoS2 active pixel image sensor array are successfully investigated using light stencil projection.

7.
Adv Mater ; 33(47): e2006091, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34048086

RESUMO

Metal oxide thin-film transistors have been continuously researched and mass-produced in the display industry. However, their phototransistors are still in their infancy. In particular, utilizing metal oxide semiconductors as phototransistors is difficult because of the limited light absorption wavelength range and persistent photocurrent (PPC) phenomenon. Numerous studies have attempted to improve the detectable light wavelength range and the PPC phenomenon. Here, recent studies on metal oxide phototransistors are reviewed, which have improved the range of light wavelengths and the PPC phenomenon by introducing an absorption layer of oxide or non-oxide hybrid structure. The materials of the absorption layer applied to absorb long-wavelength light are classified into oxides, chalcogenides, organic materials, perovskites, and nanodots. Finally, next-generation convergence studies combined with other research fields are introduced and future research directions are detailed.

8.
Bioprocess Biosyst Eng ; 44(4): 913-925, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33502625

RESUMO

The sweet-tasting protein brazzein offers considerable potential as a functional sweetener with antioxidant, anti-inflammatory, and anti-allergic properties. Here, we optimized a chemically defined medium to produce secretory recombinant brazzein in Kluyveromyces lactis, with applications in mass production. Compositions of defined media were investigated for two phases of fermentation: the first phase for cell growth, and the second for maximum brazzein secretory production. Secretory brazzein expressed in the optimized defined medium exhibited higher purity than in the complex medium; purification was by ultrafiltration using a molecular weight cutoff, yielding approximately 107 mg L-1. Moreover, the total media cost in this defined medium system was approximately 11% of that in the optimized complex medium to generate equal amounts of brazzein. Therefore, the K. lactis expression system is useful for mass-producing recombinant brazzein with high purity and yield at low production cost and indicates a promising potential for applications in the food industry.


Assuntos
Kluyveromyces/metabolismo , Proteínas de Plantas/química , Anti-Inflamatórios/química , Antioxidantes/química , Biotecnologia/métodos , Meios de Cultura , Densitometria , Fermentação , Concentração de Íons de Hidrogênio , Microbiologia Industrial/métodos , Peso Molecular , Permeabilidade , Proteínas Recombinantes/química , Edulcorantes/química , Temperatura
9.
ACS Appl Mater Interfaces ; 12(35): 39705-39712, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805908

RESUMO

A simple fabrication method for homojunction-structured Al-doped indium-tin oxide (ITO) thin-film transistors (TFTs) using an electrohydrodynamic (EHD) jet-printed Al2O3 passivation layer with specific line (WAl2O3) is proposed. After EHD jet printing, the specific region of the ITO film below the Al2O3 passivation layer changes from a conducting electrode to a semiconducting channel layer simultaneously upon the formation of the passivation layer during thermal annealing. The channel length of the fabricated TFTs is defined by WAl2O3, which can be easily changed with varying EHD jet printing conditions, i.e., no need of replacing the mask for varying patterns. Accordingly, the drain current and resistance of the fabricated TFTs can be modified by varying the WAl2O3. Using the proposed method, a transparent n-type metal-oxide-semiconductor (NMOS) inverter with an enhancement load can be fabricated; the effective resistance of load and drive TFTs is easily tuned by varying the processing conditions using this simple method. The fabricated NMOS inverter exhibits an output voltage gain of 7.13 with a supply voltage of 10 V. Thus, the proposed approach is promising as a low-cost and flexible manufacturing system for multi-item small-lot-sized production of Internet of Things devices.

10.
ACS Appl Mater Interfaces ; 12(16): 19123-19129, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32227838

RESUMO

Amorphous indium-gallium-zinc oxide (a-IGZO) films, which are widely regarded as a promising material for the channel layer in thin-film transistors (TFTs), require a relatively high thermal annealing temperature to achieve switching characteristics through the formation of metal-oxygen (M-O) bonding (i.e., the activation process). The activation process is usually carried out at a temperature above 300 °C; however, achieving activation at lower temperatures is essential for realizing flexible display technologies. Here, a facile, low-cost, and novel technique using cellophane tape for the activation of a-IGZO films at a low annealing temperature is reported. In terms of mechanochemistry, mechanical pulling of the cellophane tape induces reactive radicals on the a-IGZO film surface, which can give rise to improvements in the properties of the a-IGZO films, leading to an increase in the number of M-O bonds and the carrier concentration via radical reactions, even at 200 °C. As a result, the a-IGZO TFTs, compared to conventionally annealed a-IGZO TFTs, exhibited improved electrical performances, such as mobility, on/off current ratio, and threshold voltage shift (under positive bias temperature and negative bias temperature stress for 10,000 s at 50 °C) from 8.25 to 12.81 cm2/(V·s), 2.85 × 107 to 1.21 × 108, 6.81 to 3.24 V, and -6.68 to -4.93 V, respectively.

11.
ACS Appl Mater Interfaces ; 12(9): 10673-10680, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32052953

RESUMO

Visible light can be detected using an indium-gallium-zinc oxide (IGZO)-based phototransistor, with a selenium capping layer (SCL) that functions as a visible light absorption layer. Selenium (Se) exhibits photoconductive properties as its conductivity increases with illumination. We report an IGZO phototransistor with an SCL (SCL/IGZO phototransistor) that demonstrated optimal photoresponse characteristics when the SCL was 150 nm thick. The SCL/IGZO phototransistor exhibited a photoresponsivity of 1.39 × 103 A/W, photosensitivity of 4.39 × 109, detectivity of 3.44 × 1013 Jones, and external quantum efficiency of 3.52 × 103% when illuminated by green light (532 nm). Ultraviolet-visible spectroscopy and ultraviolet photoelectron spectroscopy analysis showed that Se has a narrow energy band gap, in which visible light is absorbed and forms a p-n junction with IGZO so that photogenerated electron-hole pairs are easily separated, which makes recombination more challenging. We show that electrons generated in the SCL flow through the IGZO layer, which enables the phototransistor to detect visible light. Furthermore, the SCL/IGZO phototransistor exhibited excellent durability and reversibility owing to the constant light and dark current and the time-dependent photoresponse characteristics over 8000 s when a red light (635 nm) source was turned on and off at a frequency of 0.1 Hz.

13.
J Agric Food Chem ; 68(7): 2183-2192, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31984741

RESUMO

Obesity is a global chronic disease linked to various diseases. Increased consumption of added sugars, especially in beverages, is a key contributor to the obesity epidemic. It is essential to reduce or replace sugar intake with low-calorie sweeteners. Here, a natural sweet protein, 3M-brazzein, was investigated as a possible sugar substitute. Mice were exposed to 3M-brazzein or 10% sucrose of equivalent sweetness, in drinking water to mimic human obesity development over 15 weeks. Consumption of 3M-brazzein in liquid form did not cause adiposity hypertrophy, resulting in 33.1 ± 0.4 g body weight and 0.90 ± 0.2 mm fat accumulation, which were 35.9 ± 0.7 g (p = 0.0094) and 1.53 ± 0.067 mm (p = 0.0031), respectively, for sucrose supplement. Additionally, 3M-brazzein did not disrupt glucose homeostasis or affect insulin resistance and inflammation. Due to its naturally low-calorie content, 3M-brazzein could also be a potential sugar substitute that reduces adiposity.


Assuntos
Doenças Metabólicas/metabolismo , Obesidade/metabolismo , Proteínas de Plantas/metabolismo , Edulcorantes/metabolismo , Adiposidade , Animais , Peso Corporal , Ingestão de Energia , Humanos , Resistência à Insulina , Kluyveromyces/genética , Kluyveromyces/metabolismo , Masculino , Doenças Metabólicas/imunologia , Doenças Metabólicas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/imunologia , Obesidade/fisiopatologia , Proteínas de Plantas/genética
14.
ACS Appl Mater Interfaces ; 12(2): 2615-2624, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31850727

RESUMO

In recent decades, oxide thin-film transistors (TFTs) have attracted a great deal of attention as a promising technology in terms of next-generation electronics due to their outstanding electrical performance. However, achieving robust electrical characteristics under various environments is a crucial challenge for successful realization of oxide-based electronic applications. To resolve the limitation, we propose a highly flexible and reliable heterogeneous organic passivation layer composed of stacked parylene-C and diketopyrrolopyrrole-polymer films for improving stability of oxide TFTs under various environments and mechanical stress. The presented multifunctional heterogeneous organic (MHO) passivation leads to high-performance oxide TFTs by: (1) improving their electrical characteristics, (2) protecting them from external reactive molecules, and (3) blocking light exposure to the oxide layer. As a result, oxide TFTs with MHO passivation exhibit outstanding stability in ambient air as well as under light illumination: the threshold voltage shift of the device is almost 0 V under severe negative bias illumination stress condition (white light of 5700 lx, gate voltage of -20 V, and drain voltage of 10.1 V for 20 000 s). Furthermore, since the MHO passivation layer exhibits high mechanical stability at a bending radius of ≤5 mm and can be deposited at room temperature, this technique is expected to be useful in the fabrication of flexible/wearable devices.

15.
ACS Appl Mater Interfaces ; 11(42): 38964-38972, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31573177

RESUMO

We present a solution-processed oxide absorption layer (SAL) for detecting visible light of long wavelengths (635 and 532 nm) for indium-gallium-zinc oxide (IGZO) phototransistors. The SALs were deposited onto sputtered IGZO using precursor solutions composed of IGZO, which have the same atomic configuration as that of the channel layer, resulting in superior interface characteristics. We artificially generated subgap states in the SAL using a low annealing temperature (200 °C), minimizing the degradation of the electrical characteristics of thin-film transistor. These subgap states improved the photoelectron generation in SALs under visible light of long wavelength despite the wide band gap of IGZO (∼3.7 eV). As a result, IGZO phototransistors with SALs have both high optical transparency and superior optoelectronic characteristics such as a high photoresponsivity of 206 A/W and photosensitivity of ∼106 under the influence of a green (532 nm) laser. Furthermore, endurance tests proved that the IGZO phototransistor with SALs can operate stably under red laser illumination switched on and off at 0.05 Hz for 7200 s.

17.
ACS Appl Mater Interfaces ; 10(8): 7223-7230, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29405061

RESUMO

A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 106, and a detectivity of 6.93 × 1011 Jones under 635 nm light illumination.

18.
Sci Rep ; 7(1): 16265, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176568

RESUMO

We report low-temperature solution processing of hafnium oxide (HfO2) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl4) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO2 film. The fabricated HfO2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

19.
J Colloid Interface Sci ; 247(2): 372-80, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16290477

RESUMO

A liquid drop that partially wets a solid surface will slide down the plane when it is tilted beyond a critical inclination. Here we report the study of the sliding velocity of such a drop. Experiments for measuring the steady sliding velocity of different liquids of drops are performed. We then construct a scaling law that predicts the sliding velocity given the physical properties, wetting characteristics, and size of the drop. When the sliding velocity is low and the drop distortion due to inclination is small, the scaling law is shown to correctly model the functional dependency of the measured sliding velocity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...