Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Sci ; 330: 111622, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36731749

RESUMO

The wheat pericarp is the main component of the caryopsis at the early development stage and ultimately converts into a tissue that covers the mature caryopsis. A large number of starch granules are accumulated in the pericarp, but the production of and the role of starch granules in caryopsis development remain- elusive. In the present study, the relationship between accumulated starch granules and starch metabolism-related genes in wheat pericarp was investigated using paraffin section observations, expression analysis, and mutant analysis. Starch synthesis is initiated before anthesis and is dependent on a sucrose uptake and conversion system similar to that in the endosperm. TaPTST2 is required to initiate the production of pericarp starch granules. Pericarp starch granules gradually disappeared at the filling stage with high expression levels of genes encoding ß-amylase, sucrose-phosphate synthase, and sucrose-phosphate phosphatase. As a maternal tissue adjacent to the endosperm and embryo, the pericarp plays a temporary reservoir for excess nutrients delivered into the caryopsis during the early development stage and exported at the filling stage. The pericarp contributes to the development of the endosperm and embryo as well as the accumulation of endosperm starch. The metabolism of pericarp starch may affect the weight of the wheat caryopsis.


Assuntos
Endosperma , Amido , Endosperma/metabolismo , Amido/metabolismo , Triticum/metabolismo , Metabolismo dos Carboidratos , Sacarose/metabolismo
2.
Food Chem ; 376: 131944, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34971891

RESUMO

This study investigated the influence of wheat waxy proteins on type III resistant starch (RS3) formation, molecular structure and physicochemical properties. Waxy deletions led to a significant increase in B- and C-type starch granules, particle size of RS3, and slowly digesting starch content, and a decrease in content of amylose and RS3. X-ray powder diffraction and Fourier-transform infrared spectroscopy analyses revealed high relative crystallinity and long-range (1047/1022 cm-1, IR1) and low short-range (1022/995, IR2) crystalline structures of RS3 in waxy wheat, which suggests that waxy deletions could produce a more ordered crystalline structure and fewer amorphous regions in RS3 crystals. Further laser confocal microscopy Raman spectroscopy analysis found that waxy deletions significantly increased the full width at half maximum and intensity of the bands at 480 cm-1, as well as leading to more ordered RS3 crystals. These changes in molecular structure resulted in improved physicochemical properties of RS3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...