Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(11): 14038-14046, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445951

RESUMO

The interplay between flexoelectric and optoelectronic characteristics provides a paradigm for studying emerging phenomena in various 2D materials. However, an effective way to induce a large and tunable strain gradient in 2D devices remains to be exploited. Herein, we propose a strategy to induce large flexoelectric effect in 2D ferroelectric CuInP2S6 by constructing a 1D-2D mixed-dimensional heterostructure. The strong flexoelectric effect is induced by enormous strain gradient up to 4.2 × 106 m-1 resulting from the underlying ZnO nanowires, which is further confirmed by the asymmetric coercive field and the red-shift in the absorption edge. The induced flexoelectric polarization efficiently boosts the self-powered photodetection performance. In addition, the improved photoresponse has a good correlation with the induced strain gradient, showing a consistent size-dependent flexoelectric effect. The mechanism of flexoelectric and optoelectronic coupling is proposed based on the Landau-Ginzburg-Devonshire double-well model, supported by density functional theory (DFT) calculations. This work provides a brand-new method to induce a strong flexoelectric effect in 2D materials, which is not restricted to crystal symmetry and thus offers unprecedented opportunities for state-of-the-art 2D devices.

2.
RSC Adv ; 13(48): 33588-33594, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38020035

RESUMO

Two-dimensional CuCrP2S6 possesses significant potential for low-power non-volatile devices owing to its multiferroic properties. Nonetheless, comprehensive investigations regarding the modulation of CuCrP2S6 polarization for enhancing semiconductor photodetection capabilities and its potential applications in ferroelectric non-volatile devices are still relatively scarce. In this study, we present a novel, non-volatile, tunable photodetector engineered through the integration of a ferroelectric heterostructure comprising CuCrP2S6 and InSe. Our findings reveal that distinct ferroelectric polarization states of CuCrP2S6 exert varying modulation effects on the InSe photodetection performance. Notably, optimized results give a responsivity of 1839 A W-1 and a detectivity of 1.9 × 1012 Jones at a 300 nm wavelength, featuring a substantial 20.7-fold difference in responsivity between the two polarization states. This investigation underscores the immense potential of CuCrP2S6 in the development of non-volatile, multi-state optoelectronic devices.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234488

RESUMO

The ferroelectric field effect transistor (Fe-FET) is considered to be one of the most important low-power and high-performance devices. It is promising to combine a ferroelectric field effect with a photodetector to improve the photodetection performance. This study proposes a strategy for ZnO ultraviolet (UV) photodetectors regulated by a ferroelectric gate. The ZnO nanowire (NW) UV photodetector was tuned by a 2D CuInP2S6 (CIPS) ferroelectric gate, which decreased the dark current and enhanced the responsivity and detectivity to 2.40 × 104 A/W and 7.17 × 1011 Jones, respectively. This strategy was also applied to a ZnO film UV photodetector that was tuned by a P(VDF-TrFE) ferroelectric gate. Lower power consumption and higher performance can be enabled by ferroelectric tuning of ZnO ultraviolet photodetectors, providing new inspiration for the fabrication of high-performance photodetectors.

4.
Chemistry ; 28(64): e202201705, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35997545

RESUMO

Two-dimensional conductive metal-organic frameworks (2D c-MOFs) are a family of highly tunable and electrically conducting materials that can be utilized in optoelectronics. A major issue of 2D c-MOFs for photodetection is their poor charge separation and recombination dynamics upon illumination. This study demonstrates a Cu3 (HHTP)2 /ZnO type-II heterojunction ultraviolet (UV) photodetector fabricated by layer-by-layer (LbL) deposition, in which the charge separation of photogenerated carriers is enhanced. At optimized MOF layer cycles, the device achieves a responsivity of 78.2 A/W and detectivity of 3.8×109 Jones at 1 V. Particularly, the device can be operated in the self-powered mode with an ultrafast response time of 70 µs, which is the record value for MOF-based photodetectors. In addition, even after 1000-time bending of 180°, the flexible device maintains stable performance. This flexible MOF-based UV photodetector with anti-fatigue and anti-bending properties provides strong implication to wearable optoelectronics.

5.
Dalton Trans ; 50(45): 16795-16802, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34766604

RESUMO

γ-phase copper(I) iodide (abbreviated to CuI hereafter) with different morphologies is realized through a one-step redox process from I-containing ionic liquid (IL) or poly(ionic liquid)s (PILs) precursors at room temperature. The phase composition, morphology, and electronic states of the synthesized CuI samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The resulting CuI products exhibit three different types of morphologies, namely nanocrystals, with an average size of 0.8 ± 0.2 µm, nanoplates, with a thickness of 35.8 ± 0.9 nm, and nanoflowers, with petals with a thickness of 12.2 ± 0.8 nm. Moreover, the as-synthesized CuI samples exhibit gradually diminishing bandgaps and improved photocatalysis performance for the photodegradation of rhodamine B (RhB) under visible light irradiation as the thickness decreases. XPS measurements confirm that IL/PILs coupled to the CuI surface, resulting in a further charge transfer between Cu and I. These results conclusively prove that IL/PILs serve as both the reducing agents and assemble as orientation templates in the formation of the CuI nanostructures, and also successfully mediate the functional properties of the samples by changing the surface electronic structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...