Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 6(24): 1902230, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871872

RESUMO

Perovskite quantum dots (PQDs) are a competitive candidate for next-generation display technologies as a result of their superior photoluminescence, narrow emission, high quantum yield, and color tunability. However, due to poor thermal resistance and instability under high energy radiation, most PQD-based white light-emitting diodes (LEDs) show only modest luminous efficiency of ≈50 lm W-1 and a short lifetime of <100 h. In this study, by incorporating cellulose nanocrystals, a new type of QD film is fabricated: CH3NH3PbBr3 PQD paper that features 91% optical absorption, intense green light emission (518 nm), and excellent stability attributed to the complexation effect between the nanocellulose and PQDs. The PQD paper is combined with red K2SiF6:Mn4+ phosphor and blue GaN LED chips to fabricate a high-performance white LED demonstrating ultrahigh luminous efficiency (124 lm W-1), wide color gamut (123% of National Television System Committee), and long operation lifetime (240 h), which paves the way for advanced lighting technology.

2.
Nanomaterials (Basel) ; 9(9)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540013

RESUMO

We demonstrate excellent color quality of liquid-type white light-emitting diodes (WLEDs) using a combination of green light-emitting CsPbBr3 and red light-emitting CdSe/ZnS quantum dots (QDs). Previously, we reported red (CsPbBr1.2I1.8) and green (CsPbBr3) perovskite QDs (PQDs)-based WLEDs with high color gamut, which manifested fast anion exchange and stability issues. Herein, the replacement of red PQDs with CdSe/ZnS QDs has resolved the aforementioned problems effectively and improved both stability and efficiency. Further, the proposed liquid-type device possesses outstanding color gamut performance (132% of National Television System Committee and 99% of Rec. 2020). It also shows a high efficiency of 66 lm/W and an excellent long-term operation stability for over 1000 h.

3.
Nanoscale Res Lett ; 14(1): 276, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31414236

RESUMO

We have studied the characteristics of frequency response at 850-nm GaAs high-speed vertical-cavity surface-emitting lasers (VCSELs) with different kinds of oxide aperture sizes and cavity length using the PICS3D simulation program. Using 5-µm oxide aperture sizes, the frequency response behavior can be improved from 18.4 GHz and 15.5 GHz to 21.2 GHz and 19 GHz in a maximum of 3 dB at 25 °C and 85 °C, respectively. Numerical simulation results also suggest that the frequency response performances improved from 21.2 GHz and 19 GHz to 30.5 GHz and 24.5 GHz in a maximum of 3 dB at 25 °C and 85 °C due to the reduction of cavity length from 3λ/2 to λ/2. Consequently, the high-speed VCSEL devices were fabricated on a modified structure and exhibited 50-Gb/s data rate at 85 °C.

4.
Angew Chem Int Ed Engl ; 58(7): 2069-2072, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30556265

RESUMO

Light-emitting diodes break barriers of size and performance for displays. With devices becoming smaller, the materials also need to get smaller. Chromium(III)-doped oxide phosphors, which emit near-infrared (NIR) light, have recently been used in small electronic devices. In this work, mesoporous silica nanoparticles were used as nanocarriers. The nanophosphor ZnGa2 O4 :Cr3+ ,Sn4+ formed in the mesopore after sintering. Good dispersity and morphology were performed with average diameters of 71±7 nm. It emitted light at 600-850 nm; the intensity was optimized by tuning the doping ratio of Cr3+ and Sn4+ . Meanwhile, the light conversion efficiency increased from 7.8 % to 37 % and the molar concentration increased from 0.125 m to 0.5 m. The higher radiant flux of 3.3 mW was obtained by operating an input current of 45 mA. However, the NIR nanophosphor showed good performance on mini light-emitting diode chips.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...