Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(23): 7012-7018, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820129

RESUMO

Light management is critical to maximizing the external quantum efficiency of perovskite light-emitting diodes (PeLEDs), but strategies for enhancing light out-coupling are typically complex and expensive. Here, using a facile solvent treatment strategy, we create a layer of lithium fluoride (LiF) nanoislands that serve as a template to reconstruct the light-extracting interfaces for PeLEDs. The nanoisland interface rearranges the near-field light distribution in order to maximize the efficiency of internal light extraction. With the proper adjustment of the nanoisland size and distribution, we have achieved an optimal balance between charge injection and light out-coupling, resulting in bright, pure-red quasi-two-dimensional PeLEDs with a 21.8% peak external quantum efficiency.

2.
Angew Chem Int Ed Engl ; 63(1): e202316527, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37983665

RESUMO

Developing a facile strategy to realize fine-tuning of phosphorescence color in time-dependent room temperature phosphorescence (RTP) materials is essential but both theoretically and practically rarely exploited. Through simultaneously confining carboxyl dimer association and isolated carboxyl into the particle via a simple hydrothermal treatment of polyacrylic acid, a dual-peak emission of red phosphorescence (645 nm) and green phosphorescence (550 nm) was observed from carbonized polymer dots (CPDs). The ratio of the two luminescent species can be well regulated by hydrochloric acid inhibiting the dissociation of carboxyl to promote hydrogen bond. Due to comparable but different lifetimes, color-tunable time-dependent RTP with color changing from yellow to green or orange to green were obtained. Based on the crosslinking enhanced emission effect, the phosphorescence visible time was even extended to 7 s through introducing polyethylenimide. This study not only proposes a novel and facile method for developing CPDs with color-tunable time-dependent RTP, but also provides a bran-new non-conjugated red phosphorescence unit and its definite structure.

3.
Light Sci Appl ; 12(1): 119, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188664

RESUMO

Film uniformity of solution-processed layers is the cornerstone of large-area perovskite light-emitting diodes, which is often determined by the 'coffee-ring effect'. Here we demonstrate a second factor that cannot be ignored is the solid-liquid interface interaction between substrate and precursor and can be optimized to eliminate rings. A perovskite film with rings can be formed when cations dominate the solid-liquid interface interaction; whereas smooth and homogeneous perovskite emitting layers are generated when anions and anion groups dominate the interaction. This is due to the fact that the type of ions anchored to the substrate can determine how the subsequent film grows. This interfacial interaction is adjusted using carbonized polymer dots, who also orient the perovskite crystals and passivate their buried traps, enabling a 225 mm2 large-area perovskite light-emitting diode with a high efficiency of 20.2%.

4.
Light Sci Appl ; 11(1): 56, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273150

RESUMO

Revealing the photoluminescence (PL) origin and mechanism is a most vital but challenging topic of carbon dots. Herein, confined-domain crosslink-enhanced emission (CEE) effect was first studied by a well-designed model system of carbonized polymer dots (CPDs), serving as an important supplement to CEE in the aspect of spatial interactions. The "addition-condensation polymerization" strategy was adopted to construct CPDs with substituents exerting different degrees of steric hindrance. The effect of confined-domain CEE on the structure and luminescence properties of CPDs have been systematically investigated by combining characterizations and theoretical calculations. Such tunable spatial interactions dominated the coupling strength of the luminophores in one particle, and eventually resulted in the modulated PL properties of CPDs. These findings provide insights into the structural advantages and the PL mechanism of CPDs, which are of general significance to the further development of CPDs with tailored properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...