Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biomolecules ; 14(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927020

RESUMO

Deposition of extracellular Amyloid Beta (Aß) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer's Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection. While antibodies have yielded critical evidence for the role of both Aß and tau oligomers in AD, they are not suitable for imaging amyloid oligomers in vivo. Therefore, it would be desirable to identify a set of oligomer-selective small molecules for subsequent development into Positron Emission Tomography (PET) probes. Using a kinetics-based screening assay, we confirm that the triarylmethane dye Crystal Violet (CV) is oligomer-selective for Aß42 oligomers (AßOs) grown under near-physiological solution conditions in vitro. In postmortem brains of an AD mouse model and human AD patients, we demonstrate that A11 antibody-positive oligomers but not Thioflavin S (ThioS)-positive fibrils colocalize with CV staining, confirming in vitro results. Therefore, our kinetic screen represents a robust approach for identifying new classes of small molecules as candidates for oligomer-selective dyes (OSDs). Such OSDs, in turn, provide promising starting points for the development of PET probes for pre-mortem imaging of oligomer deposits in humans.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Violeta Genciana , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Humanos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Violeta Genciana/química , Amiloide/metabolismo , Amiloide/química , Tomografia por Emissão de Pósitrons , Feminino
3.
Cells ; 12(24)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132101

RESUMO

Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS-FTD patients, and the CHCHD10S59L mutation in Drosophila induces dominant toxicity together with PTEN-induced kinase 1 (PINK1), a protein critical for the induction of mitophagy. However, whether and how CHCHD10 variants regulate mitophagy flux in the mammalian brain is unknown. Here, we demonstrate through in vivo and in vitro models, as well as human FTD brain tissue, that ALS/FTD-linked CHCHD10 mutations (R15L and S59L) impair mitophagy flux and mitochondrial Parkin recruitment, whereas wild-type CHCHD10 (CHCHD10WT) normally enhances these measures. Specifically, we show that CHCHD10R15L and CHCHD10S59L mutations reduce PINK1 levels by increasing PARL activity, whereas CHCHD10WT produces the opposite results through its stronger interaction with PARL, suppressing its activity. Importantly, we also demonstrate that FTD brains with TAR DNA-binding protein-43 (TDP-43) pathology demonstrate disruption of the PARL-PINK1 pathway and that experimentally impairing mitophagy promotes TDP-43 aggregation. Thus, we provide herein new insights into the regulation of mitophagy and TDP-43 aggregation in the mammalian brain through the CHCHD10-PARL-PINK1 pathway.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Mitofagia/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/genética , Mamíferos/metabolismo , Metaloproteases/genética
4.
Proc Natl Acad Sci U S A ; 120(30): e2217128120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463212

RESUMO

Oxidative damage in the brain is one of the earliest drivers of pathology in Alzheimer's disease (AD) and related dementias, both preceding and exacerbating clinical symptoms. In response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is normally activated to protect the brain from oxidative damage. However, Nrf2-mediated defense against oxidative stress declines in AD, rendering the brain increasingly vulnerable to oxidative damage. Although this phenomenon has long been recognized, its mechanistic basis has been a mystery. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that Slingshot homolog-1 (SSH1) drives this effect by acting as a counterweight to neuroprotective Nrf2 in response to oxidative stress and disease. Specifically, oxidative stress-activated SSH1 suppresses nuclear Nrf2 signaling by sequestering Nrf2 complexes on actin filaments and augmenting Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction, independently of SSH1 phosphatase activity. We also show that Ssh1 elimination in AD models increases Nrf2 activation, which mitigates tau and amyloid-ß accumulation and protects against oxidative injury, neuroinflammation, and neurodegeneration. Furthermore, loss of Ssh1 preserves normal synaptic function and transcriptomic patterns in tauP301S mice. Importantly, we also show that human AD brains exhibit highly elevated interactions of Nrf2 with both SSH1 and Keap1. Thus, we demonstrate here a unique mode of Nrf2 blockade that occurs through SSH1, which drives oxidative damage and ensuing pathogenesis in AD. Strategies to inhibit SSH1-mediated Nrf2 suppression while preserving normal SSH1 catalytic function may provide new neuroprotective therapies for AD and related dementias.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neuroproteção , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia
5.
J Biomol Struct Dyn ; : 1-10, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349880

RESUMO

The mitochondria are responsible for producing energy within the cell, and in mitochondrial myopathy, there is a defect in the energy production process. The CHCHD10 gene codes for a protein called coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), which is found in the mitochondria and is involved in the regulation of mitochondrial function. G58R mutation has been shown to disrupt the normal function of CHCHD10, leading to mitochondrial dysfunction and ultimately to the development of mitochondrial myopathy. The structures of G58R mutant CHCHD10 and how G58R mutation impacts the wild-type CHCHD10 protein at the monomeric level are unknown. To address this problem, we conducted homology modeling, multiple run molecular dynamics simulations and bioinformatics calculations. We represent herein the structural ensemble properties of the G58R mutant CHCHD10 (CHCHD10G58R) in aqueous solution. Moreover, we describe the impacts of G58R mutation on the structural ensembles of wild-type CHCHD10 (CHCHD10WT) in aqueous solution. The dynamics properties as well as structural properties of CHCHD10WT are impacted by the mitochondrial myopathy-related G58R mutation. Specifically, the secondary and tertiary structure properties, root mean square fluctuations, Ramachandran diagrams and results from principal component analysis demonstrate that the CHCHD10WT and CHCHD10G58R proteins possess different structural ensemble characteristics and describe the impacts of G58R mutation on CHCHD10WT. These findings may be helpful for designing new treatments for mitochondrial myopathy.Communicated by Ramaswamy H. Sarma.

6.
ACS Chem Neurosci ; 14(11): 2134-2145, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194187

RESUMO

The V57E pathological variant of the mitochondrial coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10) plays a role in frontotemporal dementia. The wild-type and V57E mutant CHCHD10 proteins contain intrinsically disordered regions, and therefore, these regions hampered structural characterization of these proteins using conventional experimental tools. For the first time in the literature, we represent that the V57E mutation is pathogenic to mitochondria as it increases mitochondrial superoxide and impairs mitochondrial respiration. In addition, we represent here the structural ensemble properties of the V57E mutant CHCHD10 and describe the impacts of V57E mutation on the structural ensembles of wild-type CHCHD10 in aqueous solution. We conducted experimental and computational studies for this research. Namely, MitoSOX Red staining and Seahorse Mito Stress experiments, atomic force microscopy measurements, bioinformatics, homology modeling, and multiple-run molecular dynamics simulation computational studies were conducted. Our experiments show that the V57E mutation results in mitochondrial dysfunction, and our computational studies present that the structural ensemble properties of wild-type CHCHD10 are impacted by the frontotemporal dementia-associated V57E genetic mutation.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas Mitocondriais/química , Mitocôndrias/metabolismo , Mutação/genética , Esclerose Lateral Amiotrófica/metabolismo
7.
Proteins ; 91(6): 739-749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625206

RESUMO

The G66V pathological variant of the coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), mitochondrial, plays a role in Jokela type spinal muscular atrophy. The wild-type and G66V mutant-type CHCHD10 proteins contain intrinsically disordered regions, and therefore, their structural ensemble studies have been experiencing difficulties using conventional tools. Here, we show our results regarding the first characterization of the structural ensemble characteristics of the G66V mutant form of CHCHD10 and the first comparison of these characteristics with the structural ensemble properties of wild-type CHCHD10. We find that the structural properties, potential of mean force surfaces, and principal component analysis show stark differences between these two proteins. These results are important for a better pathology, biochemistry and structural biology understanding of CHCHD10 and its G66V genetic variant and it is likely that these reported structural properties are important for designing more efficient treatments for the Jokela type of spinal muscular atrophy disease.


Assuntos
Proteínas Mitocondriais , Atrofia Muscular Espinal , Humanos , Proteínas Mitocondriais/química , Mutação , Mitocôndrias/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Células HeLa
8.
Am J Respir Cell Mol Biol ; 68(4): 417-429, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36662576

RESUMO

TAS2Rs (bitter taste receptors) are GPCRs (G protein-coupled receptors) expressed on human airway smooth muscle (HASM) cells; when activated by receptor agonists they evoke marked airway relaxation. In both taste and HASM cells, TAS2Rs activate a canonical Gßγ-mediated stimulation of Ca2+ release from intracellular stores by activation of PLCß (phospholipase Cß). Alone, this [Ca2+]i signaling does not readily account for relaxation, particularly since bronchoconstrictive agonists acting at Gq-coupled receptors also increase [Ca2+]i. We established that TAS2R14 activation in HASM promotes relaxation through F-actin (filamentous actin) severing. This destabilization of actin was from agonist-promoted activation (dephosphorylation) of cofilin, which was pertussis toxin sensitive. Cofilin dephosphorylation was due to TAS2R-mediated deactivation of LIM domain kinase. The link between early receptor action and the distal cofilin dephosphorylation was found to be the polarity protein partitioning defective 3 (Par3), a known binding partner with PLCß that inhibits LIM kinase. The physiologic relevance of this pathway was assessed using knock-downs of cofilin and Par3 in HASM cells and in human precision-cut lung slices. Relaxation by TAS2R14 agonists was ablated with knock-down of either protein as assessed by magnetic twisting cytometry in isolated cells or intact airways in the slices. Blocking [Ca2+]i release by TAS2R14 inhibited agonist-promoted cofilin dephosphorylation, confirming a role for [Ca2+]i in actin-modifying pathways. These results further elucidate the mechanistic basis of TAS2R-mediated HASM relaxation and point toward nodal points that may act as asthma or chronic obstructive pulmonary disease response modifiers or additional targets for novel bronchodilators.


Assuntos
Actinas , Asma , Receptores Acoplados a Proteínas G , Humanos , Actinas/metabolismo , Asma/metabolismo , Quinases Lim/metabolismo , Pulmão/metabolismo , Relaxamento Muscular/fisiologia , Receptores Acoplados a Proteínas G/metabolismo
9.
Cell ; 185(21): 3913-3930.e19, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36198316

RESUMO

Although women experience significantly higher tau burden and increased risk for Alzheimer's disease (AD) than men, the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially protects females from acetylated tau accumulation, tau pathology, and cognitive impairment. USP11 levels also strongly associate positively with tau pathology in females but not males. Thus, inhibiting USP11-mediated tau deubiquitination may provide an effective therapeutic opportunity to protect women from increased vulnerability to AD and other tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Caracteres Sexuais , Tauopatias/genética , Tauopatias/patologia , Tioléster Hidrolases/genética , Proteases Específicas de Ubiquitina , Proteínas tau/genética
10.
Front Aging Neurosci ; 14: 933979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092812

RESUMO

Increasing evidence indicates that the accumulation misfolded proteins in Alzheimer's disease (AD) arises from clearance defects in the autophagy-lysosome pathway. Misfolded proteins such as Aß and tau are secreted in small extracellular vesicles (i.e., exosomes) and are propagated from cell to cell in part through secreted small extracellular vesicles (sEVs). Recent studies suggest that autophagic activity and exosome secretion are coregulated events, and multiple autophagy-related proteins are found in sEVs, including the cargo receptors Sqstm1/p62 and optineurin. However, whether and how autophagy cargo receptors per se regulate the secretion of sEVs is unknown. Moreover, despite the prominent role of actin dynamics in secretory vesicle release, its role in EV secretion is unknown. In this study, we leveraged the dual axes of Slingshot Homolog-1 (SSH1), which inhibits Sqstm1/p62-mediated autophagy and activates cofilin-mediated actin dynamics, to study the regulation of sEV secretion. Here we show that cargo receptors Sqstm1/p62 and optineurin inhibit sEV secretion, an activity that requires their ability to bind ubiquitinated cargo. Conversely, SSH1 increases sEV secretion by dephosphorylating Sqstm1/p62 at pSer403, the phospho-residue that allows Sqstm1/p62 to bind ubiquitinated cargo. In addition, increasing actin dynamics through the SSH1-cofilin activation pathway also increases sEV secretion, which is mimicked by latrunculin B treatment. Finally, Aß42 oligomers and mutant tau increase sEV secretion and are physically associated with secreted sEVs. These findings suggest that increasing cargo receptor engagement with autophagic cargo and reducing actin dynamics (i.e., SSH1 inhibition) represents an attractive strategy to promote misfolded protein degradation while reducing sEV-mediated cell to cell spread of pathology.

11.
Hum Mol Genet ; 31(23): 3987-4005, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35786718

RESUMO

Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) is a mitochondrial protein that plays important roles in cristae structure, oxidative phosphorylation and apoptosis. Multiple mutations in CHCHD2 have been associated with Lewy body disorders (LBDs), such as Parkinson's disease (PD) and dementia with Lewy bodies, with the CHCHD2-T61I mutation being the most widely studied. However, at present, only CHCHD2 knockout or CHCHD2/CHCHD10 double knockout mouse models have been investigated. They do not recapitulate the pathology seen in patients with CHCHD2 mutations. We generated the first transgenic mouse model expressing the human PD-linked CHCHD2-T61I mutation driven by the mPrP promoter. We show that CHCHD2-T61I Tg mice exhibit perinuclear mitochondrial aggregates, neuroinflammation, and have impaired long-term synaptic plasticity associated with synaptic dysfunction. Dopaminergic neurodegeneration, a hallmark of PD, is also observed along with α-synuclein pathology. Significant motor dysfunction is seen with no changes in learning and memory at 1 year of age. A minor proportion of the CHCHD2-T61I Tg mice (~10%) show a severe motor phenotype consistent with human Pisa Syndrome, an atypical PD phenotype. Unbiased proteomics analysis reveals surprising increases in many insoluble proteins predominantly originating from mitochondria and perturbing multiple canonical biological pathways as assessed by ingenuity pathway analysis, including neurodegenerative disease-associated proteins such as tau, cofilin, SOD1 and DJ-1. Overall, CHCHD2-T61I Tg mice exhibit pathological and motor changes associated with LBDs, indicating that this model successfully captures phenotypes seen in human LBD patients with CHCHD2 mutations and demonstrates changes in neurodegenerative disease-associated proteins, which delineates relevant pathological pathways for further investigation.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Animais , Camundongos , Doença de Parkinson/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Mitocondriais/genética , Mutação , Modelos Animais de Doenças
12.
Acta Neuropathol Commun ; 10(1): 95, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787294

RESUMO

Mutations in CHCHD10, a gene coding for a mitochondrial intermembrane space protein, are associated with Frontotemporal dementia (FTD)-Amyotrophic lateral sclerosis (ALS) spectrum disorders, which are pathologically characterized by cytoplasmic inclusions containing TDP-43. FTD/ALS-linked CHCHD10 mutations and TDP-43 inclusions similarly induce mitochondrial defects in respiration, fusion/fission, mtDNA stability, and cristae structure, while sizeable amounts of cytoplasmic TDP-43 aggregates are found in mitochondria. However, the mechanistic link between CHCHD10 and TDP-43 pathogenesis remains unclear. In this study, we present immunohistochemical and biochemical evidence demonstrating that insoluble CHCHD10 aggregates accumulate and colocalize with phospho-TDP-43 inclusions in brains of FTLD-TDP and AD patients, and that insoluble CHCHD10 levels tightly correlate with insoluble TDP-43 levels in control and FTLD-TDP brains. In an experimental exploration of this pathological phenotype, transgenic mice neuronally expressing FTD/ALS-linked CHCHD10R15L or CHCHDS59L mutations but not CHCHD10WT transgenic mice exhibit significantly increased CHCHD10 aggregation and phospho-TDP-43 pathology, which often colocalize within the same inclusions. Such pathologies are reflected in poor functional outcomes in long-term synaptic plasticity, motor unit physiology, and behavior in CHCHD10R15L and CHCHDS59L transgenic mice. In contrast, expression of CHCHD10WT in hTDP-43 transgenic mice (TAR4;CHCHD10WT) significantly mitigates phospho-TDP-43 pathology and rescues TDP-43-induced impairments in synaptic integrity and long-term synaptic plasticity. In isolated mitochondria, the S59L mutation induces the aggregation of resident CHCHD10S59L protein as well as the aggregation and slower turnover of recombinant TDP-43 imported into mitochondria. Likewise, in an in vitro cell-free system, the S59L mutation induces the aggregation of CHCHD10S59L protein while simultaneously enhancing the aggregation of recombinant TDP-43, as evidenced by filter trap assays and atomic force microscopy. In contrast, recombinant CHCHD10WT inhibits the growth of TDP-43 aggregates. These results in human brains, transgenic mice, and in vitro systems substantiate the role of wild type and mutant CHCHD10 in modulating mitochondrial CHCHD10 and TDP-43 pathogenesis together with associated phenotypes in long-term synaptic plasticity and motor unit physiology in mice and humans.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Plasticidade Neuronal
13.
ACS Chem Neurosci ; 13(8): 1273-1280, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35349255

RESUMO

The S59L genetic mutation of the mitochondrial coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10) is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The wild-type and mutant forms of this protein contain intrinsically disordered regions, and their structural characterization has been facing challenges. Here, for the first time in the literature, we present the structural ensemble properties of the wild-type and S59L mutant form of CHCHD10 in an aqueous solution environment at the atomic level with dynamics. Even though available experiments suggested that the S59L mutation may not change the structure of the CHCHD10 protein, our structural analysis clearly shows that the structure of this protein is significantly affected by the S59L mutation. We present here the secondary structure components with their abundances per residue, the tertiary structure properties, the free energy surfaces based on the radius of gyration and end-to-end distance values, the Ramachandran plots, the quantity of intramolecular hydrogen bonds, and the principal component analysis results. These results may be crucial in designing more efficient treatment for ALS and FTD diseases.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mutantes/genética , Mutação/genética
14.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862271

RESUMO

G protein-coupled receptors (GPCRs) have been shown to play integral roles in Alzheimer's disease pathogenesis. However, it is unclear how diverse GPCRs similarly affect Aß and tau pathogenesis. GPCRs share a common mechanism of action via the ß-arrestin scaffolding signaling complexes, which not only serve to desensitize GPCRs by internalization, but also mediate multiple downstream signaling events. As signaling via the GPCRs, ß2-adrenergic receptor (ß2AR), and metabotropic glutamate receptor 2 (mGluR2) promotes hyperphosphorylation of tau, we hypothesized that ß-arrestin1 represents a point of convergence for such pathogenic activities. Here, we report that ß-arrestins are not only essential for ß2AR and mGluR2-mediated increase in pathogenic tau but also show that ß-arrestin1 levels are increased in brains of Frontotemporal lobar degeneration (FTLD-tau) patients. Increased ß-arrestin1 in turn drives the accumulation of pathogenic tau, whereas reduced ARRB1 alleviates tauopathy and rescues impaired synaptic plasticity and cognitive impairments in PS19 mice. Biochemical and cellular studies show that ß-arrestin1 drives tauopathy by destabilizing microtubules and impeding p62/SQSTM1 autophagy flux by interfering with p62 body formation, which promotes pathogenic tau accumulation.


Assuntos
Autofagia/genética , Microtúbulos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Tauopatias/etiologia , Tauopatias/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Animais , Biomarcadores , Linhagem Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Neurônios , Transporte Proteico
15.
Front Aging Neurosci ; 13: 660843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967741

RESUMO

Rare mutations in the mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are associated with Parkinson's disease (PD) and other Lewy body disorders. CHCHD2 is a bi-organellar mediator of oxidative phosphorylation, playing crucial roles in regulating electron flow in the mitochondrial electron transport chain and acting as a nuclear transcription factor for a cytochrome c oxidase subunit (COX4I2) and itself in response to hypoxic stress. CHCHD2 also regulates cell migration and differentiation, mitochondrial cristae structure, and apoptosis. In this review, we summarize the known disease-associated mutations of CHCHD2 in Asian and Caucasian populations, the physiological functions of CHCHD2, how CHCHD2 mutations contribute to α-synuclein pathology, and current animal models of CHCHD2. Further, we discuss the necessity of continued investigation into the divergent functions of CHCHD2 and CHCHD10 to determine how mutations in these similar mitochondrial proteins contribute to different neurodegenerative diseases.

16.
Redox Biol ; 38: 101824, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316744

RESUMO

Sestrin2 (Sesn2) is a stress-inducible protein that declines with aging in the heart. We reported that rescue Sesn2 levels in aged mouse hearts through gene therapy improves the resistance of aged hearts to ischemia and reperfusion (I/R) insults. We hypothesize that Sesn2 as a scaffold protein maintains mitochondrial integrity to protect heart from ischemic injury during I/R. Young C57BL/6 J (3-6 months), aged C57BL/6 J (24-26 months), and young Sesn2 KO (3-6 months, C57BL/6 J background) mice were subjected to in vivo regional ischemia and reperfusion. The left ventricle was collected for transcriptomics, proteomics and metabolomics analysis. The results demonstrated that Sesn2 deficiency leads to aging-like cardiac diastolic dysfunction and intolerance to ischemia reperfusion stress. Seahorse analysis demonstrated that Sesn2 deficiency in aged and young Sesn2 KO versus young hearts lead to impaired mitochondrial respiration rate with defects in Complex I and Complex II activity. The Sesn2 targeted proteomics analysis revealed that Sesn2 plays a critical role in maintaining mitochondrial functional integrity through modulating mitochondria biosynthesis and assembling of oxidative phosphorylation (OXPHOS) complexes. The RNA-Seq data showed that alterations in the expression of mitochondrial compositional and functional genes and substrate metabolism related genes in young Sesn2 KO and aged versus young hearts. Further immunofluorescence and immunoprecipitation analysis demonstrated that Sesn2 is translocated into mitochondria and interacts with OXPHOS components to maintain mitochondrial integrity in response to I/R stress. Biochemical analysis revealed that Sesn2 is associated with citrate cycle components to modulate pyruvate dehydrogenase and isocitrate dehydrogenase activities during I/R stress. Thus, Sesn2 serves as a scaffold protein interacting with OXPHOS components to maintain mitochondrial integrity under I/R stress. Age-related downregulation of cardiac Sesn2 fragilizes mitochondrial functional integrity in response to ischemic stress.


Assuntos
Proteínas Quinases Ativadas por AMP , Fosforilação Oxidativa , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Isquemia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reperfusão
17.
Autophagy ; 17(9): 2144-2165, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33044112

RESUMO

Accumulation of toxic protein assemblies and damaged mitochondria are key features of neurodegenerative diseases, which arise in large part from clearance defects in the Macroautophagy/autophagy-lysosome system. The autophagy cargo receptor SQSTM1/p62 plays a major role in the clearance of ubiquitinated cargo through Ser403 phosphorylation by multiple kinases. However, no phosphatase is known to physiologically dephosphorylate SQSTM1 on this activating residue. RNAi-mediated knockdown and overexpression experiments using genetically encoded fluorescent reporters and defined mutant constructs in cell lines, primary neurons, and brains show that SSH1, the canonical CFL (cofilin) phosphatase, mediates the dephosphorylation of phospho-Ser403-SQSTM1, thereby impairing SQSTM1 flux and phospho-MAPT/tau clearance. The inhibitory action of SSH1 on SQSTM1 is fully dependent on SQSTM1 Ser403 phosphorylation status and is separable from SSH1-mediated CFL activation. These findings reveal a unique action of SSH1 on SQSTM1 independent of CFL and implicate an inhibitory role of SSH1 in SQSTM1-mediated clearance of autophagic cargo, including phospho-MAPT/tau. Abbreviations: AAV: adeno-associated virus; Aß42O: amyloid ß1-42 oligomers; AD: Alzheimer disease; CA3: cornu Ammonis 3; CSNK2/CK2: casein kinase 2; FCCP: 2-[2-[4-(trifluoromethoxy)phenyl]hydrazinylidene]-propanedinitrile; FTLD: frontotemporal lobar degeneration; GFP: green fluorescent protein; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; SQSTM1/p62: sequestosome-1; PLA: proximity ligation assay; RFP: red fluorescent protein; RIPA: radioimmunoprecipitation assay; shRNA: short hairpin RNA; siRNA: small interfering RNA; Ser403: Serine403; SSH1: slingshot protein phosphatase 1; TBK1: TANK-binding kinase 1; ULK: unc-51 like kinase 1.


Assuntos
Fatores de Despolimerização de Actina , Autofagia , Fatores de Despolimerização de Actina/metabolismo , Autofagia/genética , Lisossomos/metabolismo , Macroautofagia , Proteína Sequestossoma-1/metabolismo
18.
JCI Insight ; 5(21)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33148881

RESUMO

Diabetic neuropathy is a major complication of diabetes. Current treatment options alleviate pain but do not stop the progression of the disease. At present, there are no approved disease-modifying therapies. Thus, developing more effective therapies remains a major unmet medical need. Seeking to better understand the molecular mechanisms driving peripheral neuropathy, as well as other neurological complications associated with diabetes, we performed spatiotemporal lipidomics, biochemical, ultrastructural, and physiological studies on PNS and CNS tissue from multiple diabetic preclinical models. We unraveled potentially novel molecular fingerprints underlying nerve damage in obesity-induced diabetes, including an early loss of nerve mitochondrial (cardiolipin) and myelin signature (galactosylceramide, sulfatide, and plasmalogen phosphatidylethanolamine) lipids that preceded mitochondrial, myelin, and axonal structural/functional defects; started in the PNS; and progressed to the CNS at advanced diabetic stages. Mechanistically, we provided substantial evidence indicating that these nerve mitochondrial/myelin lipid abnormalities are (surprisingly) not driven by hyperglycemia, dysinsulinemia, or insulin resistance, but rather associate with obesity/hyperlipidemia. Importantly, our findings have major clinical implications as they open the door to novel lipid-based biomarkers to diagnose and distinguish different subtypes of diabetic neuropathy (obese vs. nonobese diabetics), as well as to lipid-lowering therapeutic strategies for treatment of obesity/diabetes-associated neurological complications and for glycemic control.


Assuntos
Diabetes Mellitus/patologia , Neuropatias Diabéticas/patologia , Hiperlipidemias/complicações , Lipídeos/análise , Mitocôndrias/patologia , Bainha de Mielina/patologia , Obesidade/complicações , Animais , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/metabolismo , Bainha de Mielina/metabolismo
19.
FASEB J ; 34(6): 8493-8509, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32369233

RESUMO

Mutations in CHCHD10, a gene coding for a mitochondrial protein, are implicated in ALS-FTD spectrum disorders, which are pathologically characterized by transactive response DNA binding protein 43 kDa (TDP-43) accumulation. While both TDP-43 and CHCHD10 mutations drive mitochondrial pathogenesis, mechanisms underlying such phenotypes are unclear. Moreover, despite the disruption of the mitochondrial mitofilin protein complex at cristae junctions in patient fibroblasts bearing the CHCHD10S59L mutation, the role of CHCHD10 variants in mitofilin-associated protein complexes in brain has not been examined. Here, we utilized novel CHCHD10 transgenic mouse variants (WT, R15L, & S59L), TDP-43 transgenic mice, FTLD-TDP patient brains, and transfected cells to assess the interplay between CHCHD10 and TDP-43 on mitochondrial phenotypes. We show that CHCHD10 mutations disrupt mitochondrial OPA1-mitofilin complexes in brain, associated with impaired mitochondrial fusion and respiration. Likewise, CHCHD10 levels and OPA1-mitofilin complexes are significantly reduced in brains of FTLD-TDP patients and TDP-43 transgenic mice. In cultured cells, CHCHD10 knockdown results in OPA1-mitofilin complex disassembly, while TDP-43 overexpression also reduces CHCHD10, promotes OPA1-mitofilin complex disassembly via CHCHD10, and impairs mitochondrial fusion and respiration, phenotypes that are rescued by wild type (WT) CHCHD10. These results indicate that disruption of CHCHD10-regulated OPA1-mitofilin complex contributes to mitochondrial abnormalities in FTLD-TDP and suggest that CHCHD10 restoration could ameliorate mitochondrial dysfunction in FTLD-TDP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , GTP Fosfo-Hidrolases/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Musculares/genética , Mutação/genética , Células NIH 3T3 , Fenótipo
20.
Proc Natl Acad Sci U S A ; 117(9): 5006-5015, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071246

RESUMO

Multiple G protein-coupled receptors (GPCRs) are targets in the treatment of dementia, and the arrestins are common to their signaling. ß-Arrestin2 was significantly increased in brains of patients with frontotemporal lobar degeneration (FTLD-tau), a disease second to Alzheimer's as a cause of dementia. Genetic loss and overexpression experiments using genetically encoded reporters and defined mutant constructs in vitro, and in cell lines, primary neurons, and tau P301S mice crossed with ß-arrestin2-/- mice, show that ß-arrestin2 stabilizes pathogenic tau and promotes tau aggregation. Cell and mouse models of FTLD showed this to be maladaptive, fueling a positive feedback cycle of enhanced neuronal tau via non-GPCR mechanisms. Genetic ablation of ß-arrestin2 markedly ablates tau pathology and rescues synaptic plasticity defects in tau P301S transgenic mice. Atomic force microscopy and cellular studies revealed that oligomerized, but not monomeric, ß-arrestin2 increases tau by inhibiting self-interaction of the autophagy cargo receptor p62/SQSTM1, impeding p62 autophagy flux. Hence, reduction of oligomerized ß-arrestin2 with virus encoding ß-arrestin2 mutants acting as dominant-negatives markedly reduces tau-laden neurofibrillary tangles in FTLD mice in vivo. Reducing ß-arrestin2 oligomeric status represents a new strategy to alleviate tau pathology in FTLD and related tauopathies.


Assuntos
Demência Frontotemporal/patologia , beta-Arrestina 2/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Transcriptoma , beta-Arrestina 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...