Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392844

RESUMO

Glucose-induced oxidative stress is associated with the overproduction of reactive oxygen species (ROS), which may dysregulate the expression of genes controlling insulin secretion leading to ß-cell dysfunction, a hallmark of type 2 diabetes mellitus (T2DM). This study investigated the impact of coloured rice phenolic extracts (CRPEs) on the expression of key genes associated with ß-cell function in pancreatic ß-cells (INS-1E). These genes included glucose transporter 2 (Glut2), silent mating type information regulation 2 homolog 1 (Sirt1), mitochondrial transcription factor A (Tfam), pancreatic/duodenal homeobox protein 1 (Pdx-1) and insulin 1 (Ins1). INS-1E cells were cultured in high glucose (25 mM) to induce glucotoxic stress conditions (HGSC) and in normal glucose conditions (NGC-11.1 mM) to represent normal ß-cell function. Cells were treated with CRPEs derived from two coloured rice cultivars, Purple and Yunlu29-red varieties at concentrations ranged from 50 to 250 µg/mL. CRPEs upregulated the expression of Glut2, Sirt1 and Pdx-1 significantly at 250 µg/mL under HGSC. CRPEs from both cultivars also upregulated Glut2, Sirt1, Tfam, Pdx-1 and Ins1 markedly at 250 µg/mL under NGC with Yunlu29 having the greatest effect. These data suggest that CRPEs may reduce ß-cell dysfunction in T2DM by upregulating the expression of genes involved in insulin secretion pathways.


Assuntos
Diabetes Mellitus Tipo 2/genética , Marcadores Genéticos/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Oryza/química , Fenóis/farmacologia , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/efeitos adversos , Transportador de Glucose Tipo 2/genética , Proteínas de Homeodomínio/genética , Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Modelos Biológicos , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Sirtuína 1/genética , Transativadores/genética , Regulação para Cima
2.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878222

RESUMO

Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with various contributing factors including genetics, epigenetics, environment and lifestyle such as diet. The hallmarks of T2DM are insulin deficiency (also referred to as ß-cell dysfunction) and insulin resistance. Robust evidence suggests that the major mechanism driving impaired ß-cell function and insulin signalling is through the action of intracellular reactive oxygen species (ROS)-induced stress. Chronic high blood glucose (hyperglycaemia) and hyperlipidaemia appear to be the primary activators of these pathways. Reactive oxygen species can disrupt intracellular signalling pathways, thereby dysregulating the expression of genes associated with insulin secretion and signalling. Plant-based diets, containing phenolic compounds, have been shown to exhibit remedial benefits by ameliorating insulin secretion and insulin resistance. The literature also provides evidence that polyphenol-rich diets can modulate the expression of genes involved in insulin secretion, insulin signalling, and liver gluconeogenesis pathways. However, whether various polyphenols and phenolic compounds can target specific cellular signalling pathways involved in the pathogenesis of T2DM has not been elucidated. This review aims to evaluate the modulating effects of various polyphenols and phenolic compounds on genes involved in cellular signalling pathways (both in vitro and in vivo from human, animal and cell models) leading to the pathogenesis of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Polifenóis/farmacologia , Animais , Humanos , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...